Präsentation herunterladen
1
Strukturgleichungsmodelle
2
Grundlagen Strukturgleichungsmodell erlauben die Prüfung von statistischen Modell Es erfolgt ein Vergleich von empirischen und vom Modell prognostizierten Daten. Die Berechnungen erfolgen auf Ebene der Kovarianz- oder Korrelationsmatrix. Grundsätzlich handelt es sich hierbei um ein konfirmatorisches (bestätigendes) Vorgehen. Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
3
Grundlagen Vorteile: Es können mehrere Beziehungen gleichzeitig geschätzt werden. Abhängige Variablen können in anderem Zusammenhang unabhängig sein. Latente Variablen können integriert werden. Reliabilitätsbereinigung, bessere Messmodelle Messfehler können explizit modelliert werden Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
4
Variablenbeschreibung
Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
5
Beispiel 1 Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
6
Beispiel 2 Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
7
Verarbeitungsschema Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
8
Grundregeln der Pfadanalyse
Die Korrelation zweier Variablen ergibt sich als Summe der Produkte entlang aller Pfade, die zwei Variablen verbinden. Folgende Regeln müssen dabei beachtet werden: Wenn man auf einem Pfad vorwärts gegangen ist, darf man nicht mehr zurückgehen. Der Pfad darf dieselbe Variable nicht zweimal durchlaufen. Der Pfad darf nur einen Korrelationspfad enthalten. Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
9
Annahmen der Pfadanalyse
Alle theoretisch vorhandenen Kausalbeziehungen sind im Modell enthalten. Es sollte die geringste Anzahl an Beziehungen in Modell aufgenommen werden, die theoretisch gerechtfertigt ist. Beziehungen zwischen den Variablen sind linear. Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
10
Effektstärken für Pfadmodelle
Schwacher Effekt = .1 Mittlerer Effekt = .3 Starker Effekte = .5 Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
11
Grundbedingungen für Kausalität
Genügend starke Assoziation Zeitliche Abfolge: Ursache Wirkung Fehlen alternativer kausal wirksamer Variablen Theoretische Basis für die kausale Beziehung Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
12
Passung des Modells bei Strukturgleichungsmodellen wird überprüft, ob Empirie und Modell zueinander passen hierbei findet ein Vergleich der empirischen Kovarianzmatrix und der vom Modell vorhergesagten Kovarianzmatrix statt Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
13
Freiheitsgrade bei Strukturgleichungsmodelle
in der Kovarianzmatrix: Stichprobenmomente Varianzen der manifesten Variablen + Kovarianzen zwischen den manifesten Variablen bei p Variablen: Stichprobenmomente = p(p+1)/2 Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
14
Freiheitsgrade bei Strukturgleichungsmodelle
Schätzmomente (Parameter, welchem im Modell geschätzt werden müssen): Anzahl der zu schätzenden Parameter im Modell Alle Pfeile ohne 1 und die Varianzen aller exogenen Variablen df = Stichprobenmomente – Schätzmomente je sparsamer ein Modell, desto mehr Freiheitsgrade hat es Rainer Leonhart, Dipl.Psych, Universität Freiburg, Institut für Psychologie
15
Vielen Dank für Ihre Aufmerksamkeit!
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.