Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Tutorat Statistik II im SS 09 Mediator- & Moderatoranalyse

Ähnliche Präsentationen


Präsentation zum Thema: "Tutorat Statistik II im SS 09 Mediator- & Moderatoranalyse"—  Präsentation transkript:

1 Tutorat Statistik II im SS 09 Mediator- & Moderatoranalyse

2 Memo: Multiple Regression Was fällt euch noch ein?

3 Memo -Berechnung prinzipiell analog zur einfachen Regression: Methode der kleinsten Quadrate; Basis Korrelationen -Voraussetzungen: Identisch, mit Ausnahme der Bedingung Skalenniveau der Prädiktoren -Standardisierung: Interpretation von b- versus beta-Gewichten -Capitalization on Chance & Schrumpfungskorrektur

4 Thema: Mediator- und Moderatoranalyse

5 Gliederung I.Matrizenrechnung & Allgemeines Lineares Modell II.Mediatoranalyse III.Moderatoranalyse

6 I.Matrizen & ALM

7 Matrizenrechnung oMatrizen: Tabellen mit n x m Zellen oGrund der Behandlung des Themas: Darstellung von Daten in Matrizenform Varianzanalyse, Faktorenanalyse

8 Das Allgemeine Lineare Modell oÜbergeordnete Darstellungsform für verschiedene statistische Verfahren: Varianzanalyse Regression oRelevant ist das Verständnis der mathematischen Darstellung

9

10 Effekte oEffekte sind die Basis der Varianzanalyse Definition: Abweichung eines Gruppenmittelwerts vom Gesamtmittelwert.

11

12 II.Mediatoranalyse

13 Korrelationen & Kausalität Wie wir wissen, belegen Korrelationen Zusammenhänge zwischen Variablen. Sie beantworten jedoch nicht die Frage nach dem Ursache-Wirkungszusammenhang – also der Kausalität. Zwei Variablen Korrelieren signifikant. Welche Kausalitäten sind möglich?

14 Mediatoranalyse oDie Mediatoranalyse prüft, ob ein Zusammenhang zwischen zwei Variablen vollständig oder teilweise durch eine dritte Variable vermittelt wird. oSie erlaubt demgemäß die Vielfalt der bei Korrelationen möglichen Kausalitäten einzuschränken (Pfadanalyse). oAlternative: Die Kausalitäten sind durch experimentelle Prüfung oder theoretische Ableitung bereits bekannt Replikation oGrundsatz: Erst die Theorie, dann die Statistik – Zahlen sprechen nicht

15 Unser Beispiel: Wird der Zusammenhang von kindlicher und mütterlicher Aggressivität durch die väterliche Aggressivität vermittelt? Hinweis: Wir nehmen an, dass die Wirkrichtungen für die Zusammenhänge noch nicht belegt sind. Mediatoranalyse

16 Kind Mutter Vater Unabhängige Variable Abhängige Variable Mediatorvariable

17 Mediatoranalyse: Schritt 1 oRegression (Rückführung) von Y auf X. Regression der mütterlichen auf die kindliche Aggressivität. Y = b * X + a oNur wenn sich eine signifikanter Zusammenhang zwischen der AV und der UV ergibt (b 0), kann eine Mediation vorliegen. Kind Mutter Vater b Y,X0

18 Mediatoranalyse: Schritt 2 oRegression von M auf X. Regression der väterlichen auf die kindliche Aggressivität. M = b * X + a oWenn b=0, kann M kein Mediator sein. Kind Mutter Vater b M,X0

19 Mediatoranalyse: Schritt 3 oRegression von Y auf M. Regression der mütterlichen auf die väterliche Aggressivität Y = b * M + a oWenn b=0, kann M kein Mediator sein. Kind Mutter Vater b Y,M0

20 Mediatoranalyse: Schritt 4 oRegression von Y auf M und X. Regression der mütterlichen auf die kindliche und väterliche Aggressivität. Y = b YX * X + b YM * M + a oWenn b YX =0 und b YM 0, spricht man von vollständiger Mediation, da der komplette Effekt der kindlichen über die väterliche Aggressivität vermittelt ist. oWenn |b YX |>0 aber kleiner als in Schritt 1, spricht man von partieller Mediation. Kind Mutter Vater b Y,M0 b Y,M = 0

21 Mediation & Kausalität Liegt eine vollständige Mediation vor, können wir – ohne zuvor Erkenntnisse über bestehende Ursache-Wirkungsbeziehungen zu haben – die möglichen Kausalitätspfade einschränken. Was sagt ihr zu diesem Ergebnis?

22 Verknüpfung: multiple Korrelation Einen Hinweis auf das Vorliegen einer (partiellen) Mediation kann uns auch der Vergleich von Partialkorrelation und bivariater Korrelation liefern. r yx1.x2 = n.s.; r yx1 = signifikant vollständige Mediation r yx1.x2 < ryx1 partielle Mediation

23 III.Moderatoranalyse

24 Moderatoranalyse Die Moderatoranalyse prüft, ob ein Zusammenhang zwischen zwei Variablen durch eine dritte Variable beeinflusst wird. Hypothese: Die gleiche Lernzeit wirkt sich bei Probanden mit hoher mathematischer Fähigkeit stärker aus als bei Probanden mit geringer mathematischer Fähigkeit. Im Gegensatz zur Mediatorvariablen, wird nicht angenommen, dass die Moderatorvariable durch die UV beeinflusst wird – der Moderator korreliert nur mit dem Kriterium, nicht aber mit der UV.

25 Moderatoranalyse Lerndauer Note math. IQ Unabhängige Variable Abhängige Variable Moderatorvariable Hinweis: Die Moderatorvariable wirkt nicht direkt auf die Note, sondern auf den Zusammenhang, d.h. auf das b- Gewicht der Regression

26 Moderatoranalyse Note Lerndauer math. IQ - math. IQ + Hinweis: -Es wird angenommen, dass die Moderator- variable intervallskaliert ist. -Daher müsste für jede Ausprägung eine eigene Regressionsgerade gezeigt werden -Es ist jedoch üblich, nur 2 Geraden zu zeigen, z.B. für Probanden die eine Standardabeichung über bzw. unter dem Mittelwert liegen.

27 Moderatoranalyse Grundüberlegung: Wie wird die Regressionsgerade der Regression von Y auf X durch M beeinflusst? Y = b1 * X + a1(1) Es wird angenommen, dass b1 und a1 von M abhängen, d.h. dass beide Koeffizienten durch eine Regression auf M vorhergesagt werden können: b1 = b2 * M + a2 (2) a1 = b3 * M + a3(3) Jetzt werden die Gleichungen (2) und (3) in (1) eingesetzt…

28 Moderatoranalyse bzw: Prädiktoren (UVs) Regressions- Koeffizienten oEs wird nun eine Regression mit den drei Prädiktoren X, M und MX berechnet. oDas Regressionsgewicht von MX (b 1 = b 2 ) gibt an, ob und wie stark die Steigung der ursprünglichen Regression von M abhängt!

29 Moderatoranalyse: Vorgehen Interpretation des Regressionsgewichts von MX: b > 0 (sig): Je größer M, desto höher (positiver) die Steigung der ursprünglichen Regressionsgeraden b < 0 (sig) : Je größer M, desto geringer (negativer) die Steigung der ursprünglichen Regressionsgeraden b=0 (n.s.): Keine Moderation des Zusammenhangs durch M.

30 Note Lerndauer math. IQ - math. IQ +

31 Inhaltliche Bedeutung oEine Moderation bedeutet, dass eine Interaktion zwischen den Prädiktor und Moderator in Bezug auf das Kriterium vorliegt. Verknüpfung: Varianzanalyse oDas Regressionsgewicht MX beziffert die Stärke des Interaktionseffekts.

32 Vielen Dank für eure Aufmerksamkeit!

33 Aufgabe 4 a)Was wird mit einer Mediationshypothese überprüft? b)Erläutern Sie die vier Schritte der Mediatoranalyse

34 Lösung (a) Es wird die Hypothese geprüft, dass ein Zusammenhang zwischen X und Y durch eine Drittvariable, den Mediator M, kausal vermittelt wird. (b) 1. Es wird überprüft, ob überhaupt ein signifikanter Zusammenhang zwischen X und Y besteht. 2. Es wird überprüft, ob ein signifikanter Zusammenhang zwischen X und M besteht. 3. Es wird überprüft, ob ein signifikanter Zusammenhang zwischen M und Y besteht. 4. In einer multiplen Regression wird überprüft, ob ein signifikanter Zusammenhang zwischen X und Y bestehen bleibt, wenn zusätzlich der Prädiktor M berücksichtigt wird.

35 Aufgabe 5 In eine Moderationsanalyse wird geprüft, ob der Zusammenhang von X und Y durch M moderiert wird. Belegen die untenstehenden Ergebnisse eine solche Moderation?

36 Lösung Die Ergebnisse belegen eine Moderation, da das Regressionsgewicht des Prädiktors P signifikant von Null verschieden ist.


Herunterladen ppt "Tutorat Statistik II im SS 09 Mediator- & Moderatoranalyse"

Ähnliche Präsentationen


Google-Anzeigen