Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Strukturgleichungsmodell. Einleitung: Was sind Strukturgleichungsmodelle? mit ihnen werden anhand empirischer Daten a priori formulierte Kausalhypothesen.

Ähnliche Präsentationen


Präsentation zum Thema: "Strukturgleichungsmodell. Einleitung: Was sind Strukturgleichungsmodelle? mit ihnen werden anhand empirischer Daten a priori formulierte Kausalhypothesen."—  Präsentation transkript:

1 Strukturgleichungsmodell

2 Einleitung: Was sind Strukturgleichungsmodelle? mit ihnen werden anhand empirischer Daten a priori formulierte Kausalhypothesen über Merkmalszusammenhänge überprüft SGM kombinieren Ideen von: Regressionsanalyse konfirmatorischer Faktorenanalyse Pfadanalyse SGM ermöglichen zusätzliche Berücksichtigung latenter Variablen und nehmen explizit Messfehler als Bestandteil des Kausalmodells auf

3 zu Regressionsanalyse: Analyse der Beziehung zwischen 1 oder mehrerer Prädiktorvariablen und 1 Kriteriumsvariablen zu Konfirmatorischer FA: Überprüfung der festgelegten Beziehung durch Zuordnung von latenten Variablen und manifesten Variablen und Anzahl der Faktoren (Sind Indikatorvariablen für Erfassung des Faktors geeignet?) zu Pfadanalyse: Überprüfung kausaler Beziehungen zwischen direkt beobachtbaren Variablen

4 Latente Variablen beobachtbare Variablen: - Anteil, der durch Konstrukt determiniert ist - Anteil, der durch Messfehler kommt neben direkt beobachtbaren Variablen gibt es auch latente Variablen, sind nur über indirekte Indikatoren zu erfassen (z.B. FB-Items für politische Orientierung)

5 Konfirmatorische multiple hierarchische FaktorenanalyseRegression

6 Vollständiges SGM-Modell Messmodell lat. Strukturmodell Messmodell lat. exogene Variable endogene Variable (ksi ξ ) (eta η)

7 Zusammenfassung SGM bestehen immer aus 3 Teilmodellen: Messmodell der latenten exogenen Variablen: enthält die Indikatorvariablen der latenten exogenen Variablen; bildet die Zusammenhänge zwischen Indikatorvariablen und latenten exogenen Variablen ab Messmodell der latenten endogenen Variablen: enthält die Indikatorvariablen der latenten endogenen Variablen; bildet die Zusammenhänge zwischen Indikatorvariablen und latenten endogenen Variablen ab

8 Zusammenfassung Strukturmodell: bildet die theoretisch vermuteten Zusammenhänge zwischen den latenten Variablen (Konstrukten) ab; grundsätzliche Annahme dabei: endogene Variablen werden durch exogene verursacht

9 Latente Endogene Variablen Latente Exogene Variablen η (eta)ξ (ksi) entsprechen Kriteriumsvariablen (AV); sollen erklärt werden; können aber sowohl AV als auch UV sein entsprechen Prädiktorvariablen (UV); dienen der Erklärung endogener Variablen; ihre Ursachen liegen außerhalb des Modells, deshalb zeigt kein Pfeil auf sie

10 Latente Variablen - Strukturmodell Verknüpfung der latenten endogenen und exogenen Merkmale: kausale Beeinflussung ξ = latente exogene Variable (ksi) η = latente endogene Variable (eta) γ = Stärke der Beeinflussung (gamma) ζ = Residualvariable für latente endogene Variable (zeta)

11 Direkter Effekt: repräsentiert direkten Einfluss, den eine Variable auf eine andere hat, ohne dass dieser durch weitere Variablen vermittelt/beeinflusst wird; Indirekter Effekt: kennzeichnet Effekt, den eine UV vermittelt über eine oder mehrere weitere Variablen auf eine AV hat; vermittelnde Variablen werden auch Mediatorvariablen genannt; gibts keine Mediatorvariablen im Modell, gibts auch keine indirekten Effekte

12 Mediatorvariablen: vermitteln den Einfluss, den eine Variable auf eine andere Variable hat; da sie in Kausalkette steht, ist sie AV und UV zugleich Totaler Effekt: Gesamteffekt, den eine UV auf eine AV hat; man erhält ihn durch Addition der direkten und indirekten Effekte

13 Zusammenfassung - Beispiel Residuen entsprechen der nicht erklärten Varianz: je kleiner, desto besser wird empirische Datenlage durch modelltheoretische Matrix beschrieben

14 die einzelnen Ablaufschritte im SGM 1.Hypothesenbildung 2.Pfaddiagramm und Modellspezifikation –feste und freie Parameter 3.Identifikation der Modellstruktur 4.Parameterschätzung –iterative Schätzverfahren 5.Beurteilung der Schätzergebnisse – χ² -Test, Fit-Indizes und Interpretation 6.Modifikation der Modellstruktur –Vereinfachung, Erweiterung und Kausalität

15 1. Hypothesenbildung am Anfang muss die Theorie stehen Informationen, die in den Hypothesen enthalten sind: –Richtung (und Stärke) der Beziehungen –Anzahl möglicher latenter Variablen und Indikatoren

16 2. Pfaddiagramm und Modellspezifikation Pfaddiagramm wird nach vorgegebenen Konventionen gezeichnet Modellspezifikation: –Parameter, die von Interesse sind, werden eingeteilt in: freie (= aus den Daten zu schätzende) und feste (= vorher auf bestimmten Wert festgesetzte) –Nullwert –restringierte –Aufstellen der Matritzengleichungen

17 3. Identifikation der Modellstruktur = die Frage beantworten, ob aus den vorliegenden empirischen Daten ausreichend Informationen entnommen werden können, um die aufgestellten Gleichungen eindeutig zu lösen Grundvoraussetzung: s – t 0 –s – t Anzahl df –s = Anzahl der Korrelationen zwischen den Variablen –t = Zahl der zu schätzenden Parameter

18 4. Parameterschätzung Ziel: Minimierung der Differenz zwischen der modell- theoretischen Varianz-Kovarianz-Matrix () und der empirischen Varianz-Kovarianz-Matrix der Stichprobe (S) mittels iterativer Schätzverfahren: –Maximum-Likelihood-Methode (ML) –Methode der kleinsten Quadrate Methode der ungewichteten kleinsten Quadrate (ULS) Methode der verallgemeinerten kleinsten Quadrate (GLS) Methode der skalenunabhängigen kleinsten Quadrate (SLS) –Methode des asymptotisch verteilungsfreien Schätzers (ADF)

19 5. Beurteilung der Schätzergebnisse Gesamtstruktur/Anpassungsgüte des Modells = Fit des Modells –Absolute Anpassungsmaße vergleicht die empirische mit der modelltheoretischen Kovarianzmatrix am Ende des iterativen Prozesses im Hinblick auf Übereinstimmung Goodness of Fit (GFI) –Wertebereich [0; 1], (1 perfekter Fit) Root Mean Square Error of Approximation (RMSEA) –RMSEA 0.05 : guter Modellfit (close fit) –RMSEA 0.08 : akzeptabler Modellfit (reasonable fit) –RMSEA 0.1 : inakzeptabler Modellfit –Inkrementelle Anpassungsmaße: vergleichen das zu testende Modell mit einem akzeptierten Nullmodell/Vergleichsmodell – oft independence model Comparative Fit Index (CFI) –Wertebereich [0; 1], (1 perfekter Fit)

20 5. Beurteilung der Schätzergebnisse Gesamtstruktur/Anpassungsgüte des Modells Fit des Modells –Parsimosy Anpassungsmaße: χ² -Test –χ² wird an Freiheitsgrade relativiert –gibt an, welches Modell unter einem Set konkurrierender Modelle bei gleichzeitiger Berücksichtigung der Modellkomplexität am besten angepasst ist –Faustregel für einen guten Modellfit : 2,5 –Interpretation: schwierig, denn »in hohem Maße stichprobenabhängig »auch andere Modelle können gleichzeitig und genauso gut passen

21 5. Beurteilung der Schätzergebnisse Interpretations-/Ergebnishilfe: –Idealfall: χ² -Test insignifikant Test auf Modellpassung (Fit-Index) gut –die Fit-Indizes können keinerlei Auskunft über die Güte von Teilstrukturen des Modells geben sondern nur über das Modell in seiner Gesamtheit aber: auch die Güte von Teilstrukturen lässt sich mittels verschiedener Kriterien erheben so wird die Modifizierung des Modells ermöglicht

22 6. Modifizierung des Modells Anwendungsbereich: wenn Modell unzureichenden Fit oder schlechten Fit einzelner Teilstrukturen hat grundsätzlich auf 2 Arten möglich: –Vereinfachung der Modellstruktur –Erweiterung des geprüften Modells

23 6. Modifizierung des Modells Grundsätzliches zu Ergebnissen, die über die Modifizierung von SGM gewonnen wurden: warum bestimmte Veränderungen an einem SGM vorgenommen wurden, sollte theoretisch (und nicht rein statistisch/mathematisch) begründet werden sind als explorativ und nicht mehr als konfirmatorisch anzusehen wenn man nur lange genug anpasst und modifiziert, passt das Modell irgendwann ganz bestimmt! modifizierte Modelle können nicht die Allgemeingültigkeit einer Theorie stützen erfordern Kreuzvalidierung

24 Anhang – Zeichenerklärung Abkür- zung SprechweiseBedeutungVariablenart Indikator-/Messvariablen latente Variablen Kausalbeziehung zwischen (immer genau 2) Variablen; UV AV nicht kausal interpretierbare Beziehung zwischen Variablen (nur zulässig zwischen den latenten exogenen Variablen oder zwischen den Messfehlervariablen) η etaLatente endogene Variable, die im Modell erklärt wird, sie kann sowohl Ursache als auch Wirkung sein(~AV). Latente Variable

25 Abkür- zung SprechweiseBedeutungVariablenart ξ ksiLatente exogene Variable, die im Modell nicht erklärt wird (~UV). Latente Variable y ypsilon Indikatorvariable für eine latente endogene Variable (~AV). Manifeste Variable x Indikatorvariable für eine latente exogene Variable (~UV). Manifeste Variable ε epsilonResidualvariable für eine Indikatorvariable y. Residualvariable δ deltaResidualvariable für eine Indikatorvariable x. Residualvariable ζ zetaResidualvariable für eine latente endogene Variable. Residualvariable λ lambdaPfadkoeffizient zwischen einer latenten und einer Indikatorvariable. Pfadkoeffizient

26 Abkür- zung SprechweiseBedeutungVariablenart γ gammaPfadkoeffizient zwischen latenten exogenen und endogenen Variablen Pfadkoeffizient β betaPfadkoeffizient zwischen latenten endogenen Variablen Pfadkoeffizient Λx Λy Β Γ Φ Ψ Θε Θδ Lambda-x Lambda-y Beta Gamma Phi Psi Theta- epsilon Theta- delta die acht Parametermatritzen eines vollständigen Strukturgleichungsmodells (sämtlich gekennzeichnet mit griechischen Großbuchstaben)


Herunterladen ppt "Strukturgleichungsmodell. Einleitung: Was sind Strukturgleichungsmodelle? mit ihnen werden anhand empirischer Daten a priori formulierte Kausalhypothesen."

Ähnliche Präsentationen


Google-Anzeigen