Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Erste Experimente mit entarteten Fermigasen Christoph Petri.

Ähnliche Präsentationen


Präsentation zum Thema: "Erste Experimente mit entarteten Fermigasen Christoph Petri."—  Präsentation transkript:

1 Erste Experimente mit entarteten Fermigasen Christoph Petri

2 Inhalt Seite 2 Inhalt Theoretische Grundlagen Symmetrisierungspostulat, FD-Statistik Wechselwirkung identischer Fermionen Experimentelle Ergebnisse Grenzen des evaporativen Kühlens Auftreten von Entartungseffekten Ausblick auf aktuelle Forschung BCS-Übergang und Superfluidität

3 Theorie Seite 3 Symmetrisierungspostulat P sei Vertauschungsoperator, so dass gilt: Desweiteren ergibt sich: Experimenteller Befund besagt die Existenz von 2 Teilchensorten: -Bosonen: -Fermionen: Antisymmetrischer Zustand für 2 Fermionen ist somit: Pauli-Ausschlussprinzip

4 Theorie Seite 4 Fermi-Dirac-Statistik Besetzung von Energieniveaus in einem Fermigas nach Fermi-Dirac-Verteilung: Für T=0 Entartung der FD-Verteilung zur Sprungfunktion (entartetes Fermigas) Besetzung aller Zustände bis Fermi-Energie Fermi-Temperatur (Entartungstemperatur) -fürist System fast entartet bzw. für liegt klass. Grenzfall vor mit chem. Potential

5 Theorie Seite 5 Verdünnte, gefangene Fermigase N spinpolarisierte Fermionen mit Masse m in zylindersymmetrischen harmonischen Potential -Einteilchen-Hamiltonoperator -Einteilchen-Energieniveaus Übergang zu kontinuierlicher Beschreibung möglich, da gilt: -Zustandsdichte und chem. Potential aus -Fermi-Energie -Fermi-RadiusFermi-Wellenzahl Fermi-Temperatur für Anzahldichte im Phasenraum für Thomas-Fermi-Näherung

6 Theorie Seite 6 Verdünnte, gefangene Fermigase Integration über Impulsraum ergibt räumliche Verteilung Analytische Auswertung des Integrals nur für T=0 möglich -Wolke umfasst Ellipsoid mit Durchmesser in der x-y-Ebene und entlang der z-Achse Analog ergibt Integration über Ortsraum die Impulsverteilung (für T=0) -Impulsverteilung isotrop unabhängig vom Fallenpotential mit effektiver Radius

7 Theorie Seite 7 Verdünnte, gefangene Fermigase Räumliche Dichteverteilung für klassisches Ergebnis ist gegeben durch Gaußkurve, beschreibt akkurat numerischem Ergebnis für sukzessiver Übergang vom klassischen in entarteten Grenzfall im Gegensatz zur Bose-Einstein- Kondensation

8 Theorie Seite 8 Verdünnte, gefangene Fermigase Mittlere quadratische Ausdehnung der Wolke Radius bleibt für Fermigas im Falle endlich Radius des klassischen Gases verschwindet für sukzessiver Übergang zwischen den Grenzfällen

9 Theorie Seite 9 Wechselwirkung identischer Fermionen Antisymmetrie des Zustandes hat gravierende Folgen für WW identischer Fermionen für kleine T Betrachtung von Stößen zwischen spinpolarisierten Fermionen Gesamtwellenfunktionzweier Fermionen beim Stoß lässt sich Bahnanteil in Relativkoordiaten und Spinanteil separieren Im spinpolarisierten Zustand gilt,d.h.muss antisymmetrisch sein Teilchenvertauschung führt zu Vorzeichenänderung des Abstandsvektors

10 Theorie Seite 10 Wechselwirkung identischer Fermionen Asymptotische Wellenfunktion muss somit antisymmetrisiert werden Streuquerschnitt folgt aus, daher Betrachtung von ausreichend Entwicklung von nach Legendre-Polynomen mit

11 Theorie Seite 11 Wechselwirkung identischer Fermionen Es folgt für l-te Partialwelle der antisymmetrisierten Streuamplitude Aufgrund folgender Eigenschaft der LPergibt sich Unter anderem verschwindet s-Welle (l=0), welche für kleine Temperaturen den einzig relevanten Beitrag zum Streuquerschnitt liefert Zusammengefasst gilt: Bei genügend kleinen Temperaturen gibt es in einem Gas aus spinpolarisierten Fermionen praktisch keine Stöße mehr mit l gerade sehr lange Thermalisierungszeiten, evoparitives Kühlen ineffizient

12 Experiment Seite 12 Experimente Experimentelle Ansätze zur Lösung des Problems der ineffizienten Thermalisierung -Mischung zweier Gase: Zwei unterschiedlicher Gase in eine Falle. Bose-Gas wird evaporativ gekühlt. Fermi-Gas lediglich durch thermischen Kontakt -Mischung zweier Spinzustände: Verwendung eines Gases einer Spezies in verschiedenen m-Zuständen, so dass Thermalisierung zwischen unterschiedlichen m-Quantenzahlen möglich ist -Verstärkung der p-Wellenkollision: elektrisches Feld erhöht Streuung für p-Partialwelle (l=1)

13 Experiment Seite 13 Sympathetisches Kühlen Sympathetisches Kühlen durch Mischung zweier Spinzustände -Verwendung einer fermionischen Speziesin unterschiedlichen m-Zuständen s-Wellen-Streuung ist erlaubt - und -gleichmäßiges Entfernen beider Spinzustände mittels Mikrowellenfeld -Übergang in ungebundenen Spinzustand

14 Experiment Seite 14 Experimentelle Ergebnisse Grenzen des evaporativen Kühlens für Fermi-Gase -Steigung der Kurve kann als Effizienz interpretiert werden -deutliche Effizienzabnahme für 2 Gründe: -Fermi-Druck: Verringerung der Ausmaße der Wolke wird verhindert -Pauli-Blocking: zunehmende Besetzung in Fermi-Kugel für kleine T unterdrückt Stöße mit Übergang in Niederenergie- Endzustände

15 Experiment Seite 15 Experimentelle Ergebnisse Nachweis von Entartungseffekte anhand der inneren Energie -klassisch gilt für innere Energie U -für Fermi-Gas gilt bei T=0 Erwartung der Divergenz für mit

16 Experiment Seite 16 Experimentelle Ergebnisse Nachweis von Entartungseffekten anhand der optischen Dichte A, B, R, L beziehungsweisesind Fitparameter; B und R aus Randbedingungen

17 Experiment Seite 17 Experimentelle Ergebnisse Interpretation des Fitparameters L L gibt Abweichung der Impulsverteilung von einer Gaußkurve an L ist Maß für die Größe des entarteten Kerns Entartung klassischer Grenzfall

18 Experiment Seite 18 Sympathetisches Kühlen Sympathetisches Kühlen durch Mischen zweier Gase -Falle wird mit Fermi-Gas und Bose-Gas geladen -kaum Verlust an Atomen im Fermi-Gas -Bose-Gas bietet bessere Kontrolle über Temperatur -Grenze für Temperatur erreicht, wenn Wärmekapazität des Bose-Gases kleiner als die des Fermi-Gases Minimierung von Pauli-Blocking

19 Experiment Seite 19 Experimentelle Ergebnisse Quadrat des Radius des klassischen und Fermigases über Temperatur kontinuierlicher Übergang zwischen den Grenzfällen Radius des Fermi-Gases bleibt endlich Abweichung von klassischer Erwartung aufgrund Fermidruck

20 Ausblick Seite 20 BCS-Übergang und Superfluidität Für negative Streulängen besteht attraktive Wechselwirkung bzw Möglichkeit für die Bildung von Cooper-Paaren exponentielle Abhängigkeit der kritischen Temperatur von a von der Größenordnung des mittleren atomaren Abstands Realisierung des BCS-Übergang in stark wechselwirkenden Fermi-Gasen kritische Temperatur ist viele Größenordnungen kleiner als momentan erreichbare Temperaturen

21 Ausblick Seite 21 BCS-Übergang und Superfluidität Bilder der Vortices in einem stark wechselwirkenden Fermi-Gas

22 Ausblick Seite 22 BCS-Übergang und Superfluidität Gegenüberstellung von Supraleitung und Superfluidität Ausgangspunkt ist makroskopische Wellenfunktion -Betrag der Wellenfunktion ist Dichte der Cooper-Paare -relle Funktion beschreibt makroskopisch Phase der Wellenfunktion Flussquantisierung für einen supraleitenden Ring Analog gilt für die Zirkulation bei Superfluidität

23 Ausblick Seite 23 BCS-Übergang und Superfluidität Verteilung des Magnetflusses im Supraleiter Magnetfeld tritt durch normalleitende Inseln (Flussschläuche) Flussschlauch trägt ein Fluxoid Auftreten von Wirbeln in rotierendem He-II Wirbel besitzen normalfluiden Kern Wirbel trägt ein Zirkulationsquant

24 Hier steht Ihre Fußzeile Seite 24 Zusammenfassung


Herunterladen ppt "Erste Experimente mit entarteten Fermigasen Christoph Petri."

Ähnliche Präsentationen


Google-Anzeigen