Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Arzt-Patienten-Beziehung Tutorium: Medizinische Psychologie Frank Weiss-Motz WS 04/05.

Ähnliche Präsentationen


Präsentation zum Thema: "Arzt-Patienten-Beziehung Tutorium: Medizinische Psychologie Frank Weiss-Motz WS 04/05."—  Präsentation transkript:

1 Arzt-Patienten-Beziehung Tutorium: Medizinische Psychologie Frank Weiss-Motz WS 04/05

2

3 Welche Informationen muss ein Arzt für eine Diagnose und für die Behandlung im Gespräch erheben?

4 Nötige Informationen für Diagnose und Behandlung Daten: Name, Geburtsdatum, Krankenkasse Symptome (Was hat er, warum kommt er) Vorerkrankungen (gleiche, ähnliche, andere) Genetische Risiken Unverträglichkeiten, Allergien Lebensgewohnheiten (rauchen, trinken, Drogen, Arbeit) Frühere Therapien (Eigenbehandlung und Fremdbehandlung) Theorien des Patienten über die Ursache der Erkrankung Einstellung des Patienten zu Medikamenten Soziales Umfeld (Familienverhältnisse, Arbeit, Wohnumfeld)

5 Gruppenarbeit Arbeitet in 3er-Gruppen Jeder der Drei zieht sich eine Krankheit aus dem Umschlag Ein anderer aus der Gruppe spielt den Arzt und führt ein Gespräch mit dem Patienten In jeder Gruppe soll jeder einmal Patient und einmal der Arzt gewesen sein Der jeweils Dritte schreibt seine Beobachtungen zum Gespräch auf und gibt anschließend dem Arzt Rückmeldung über gute und schlechte Aspekte seiner Kommunikation sowie Hinweise zur Verbesserung Bei der Bewertung bitte auf verbale und nonverbale Kommunikation achten

6 Nötige Informationen für Diagnose und Behandlung Daten: Name, Geburtsdatum, Krankenkasse Symptome (Was hat er, warum kommt er) Vorerkrankungen (gleiche, ähnliche, andere) Genetische Risiken Unverträglichkeiten, Allergien Lebensgewohnheiten (rauchen, trinken, Drogen, Arbeit) Frühere Therapien (Eigenbehandlung und Fremdbehandlung) Theorien des Patienten über die Ursache der Erkrankung Einstellung des Patienten zu Medikamenten Soziales Umfeld (Familienverhältnisse, Arbeit, Wohnumfeld)

7 Entscheidungen bei Vorsorgeuntersuchungen Beispiel Erkrankung an Canine Ovorhoe (Bellsucht) Grunddaten: 99% der Erkrankten zeigt der Test durch positives Testergebnis an 1% der Erkrankten werden durch den Test nicht erkannt 98% der Nichtinfizierten bekommen ein negatives Ergebnis 2% der Nichtinfizierten bekommen ein positives Testergebnis An der Bellsucht erkrankt jeder 1000ste Tourist Wie groß ist die Wahrscheinlichkeit, dass man nach einem positiven Testergebnis an der Bellsucht erkrankt?

8 Entscheidungen bei Vorsorgeuntersuchungen Antwort:4,72% Grundlage zur Berechnung: Das Bayes-Theorem Thomas Bayes Englischer Mathematiker 1702 – 1761

9 Entscheidungen bei Vorsorgeuntersuchungen Wie kommen die niedrigen Wahrscheinlichkeiten zu Stande? Ein Rechenbeispiel Jedes Jahr fahren Touristen in das von Bellsucht betroffene Land. Ca. 100 erkranken wirklich an Bellsucht da Prävalenz 0,1% war erkranken nicht Wenn alle zurückgekehrten Touristen zur Vorsorgeuntersuchung gehen passiert folgendes: Von den 100 Erkrankten bekommen 99 ein positives Testergebnis da der Test 99% der Fälle aufdeckt Von den Gesunden bekommen (98%) ein negatives Testergebnis und werden daher richtig als Gesund eingestuft, 2000 bekommen ein positives Testergebnis obwohl sie gesund sind. Insgesamt bekommen also 2099 Menschen ein positives Testergebnis Von 2099 Menschen mit positivem Ergebnis sind aber nur 99 erkrankt das macht eine Quote von 99/2099 = 0,047 = 4,7% der Menschen mit positivem Ergebnis werden nur an der Krankheit erkranken !!! 14 von 15 Experten geben eine falsche Schätzung ab, 10 von 15 eine 90% oder schlechter Schätzung Menschen sind extrem schlechte Bayesianer

10 Beispiele aus der realen Praxis Mammographie P(K+) = 0,15% = 0,0015 P(T+|K+) = 90% = 0,9 P(T+|K-) = 0,27% = 0,0027 P(K+|T+) = 0,33 = 33%  2 von 3 Frauen mit positivem Mammographiebefund sind gesund und werden fälschlicherweise weiter untersucht und/oder behandelt Rektumkarzinom (Mastdarmkrebs) P(K+) = 0,3 % P(T+|K+) = 50% P(T+|K-) = 3% P(K+|T+) = 4,7% 19 von 20 Menschen mit einem positiven Vorsorgeergebnis sind gesund und machen die anschließenden weiterführenden Untersuchungen unnötig mit, ABER durch 19 mal unnötiges Leid kann 1 Mensch gerettet werden  Risikostreuung / Solidargemeinschaft

11 Vorsorgeuntersuchungen Die sehr kleinen Wahrscheinlichkeiten kommen durch die geringe Prävalenz in der untersuchten Stichprobe zustande, wie es fast nur bei Vorsorgereihenuntersuchungen der Fall ist In der Einzeldiagnostik sind die Prävalenzen verändert Kommt ein Patient in eine Klinik wegen Beschwerden, so ist die Grundrate an Erkrankungen in seiner Subgruppe (Patienten in einer Klinik) bereits deutlich erhöht. Ein positives Testergebnis hat hier also viel größere Aussagekraft. Durch unabhängige Testwiederholung kann die Aussagekraft gesteigert werden Beispiel Bellsucht: Wenn alle 2099 positiv gestesteten den Test wiederholen: Von den 99 Kranken werden wahrscheinlich 98 erneut positiv getestet Von den 2000 gesunden werden diesmal 40 erneut positiv getestet (2%) Es werden also insgesamt 138 Menschen positiv getestet von denen 98 erkrankt sind macht eine Quote von 98/138 = 0,71 = 71% In der Praxis werden daher oft redundante Tests eingesetzt um die Wahrscheinlichkeit für Fehlentscheidungen zu minimieren

12


Herunterladen ppt "Arzt-Patienten-Beziehung Tutorium: Medizinische Psychologie Frank Weiss-Motz WS 04/05."

Ähnliche Präsentationen


Google-Anzeigen