Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

√2, √3, √5, … V 0.1 Grundrechenarten Reelle Zahlen.

Ähnliche Präsentationen


Präsentation zum Thema: "√2, √3, √5, … V 0.1 Grundrechenarten Reelle Zahlen."—  Präsentation transkript:

1 √2, √3, √5, … V 0.1 Grundrechenarten Reelle Zahlen

2 Ein neuer Zahlenbereich: die irrationalen Zahlen √5 √23 - √13 √332 - √3 - √7 √2 - √ Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

3 Reelle Zahlen  Quadratwurzeln Eine Zahl x heißt Quadratwurzel einer Zahl a  0, wenn x 2 = a ist.  Die Zahl x kann positiv und negativ sein.  Die Zahl a muss immer positiv sein, denn es gibt keine Zahl, die mit sich selbst multipliziert eine negative Zahl ergibt.  Beispiele: a = 16  x = 4 oder x = – 4 a = – 25  es gibt keine Zahl, die mit sich selbst multipliziert – 25 ergibt ! Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

4 Reelle Zahlen  Quadratzahlen Eine natürliche Zahl a heißt Quadratzahl, wenn sie das Quadrat einer natürlichen Zahl b ist: a = b 2 (a, b N). Beispiele: 121 ist Quadratzahl, denn 11 * 11 = 121 und 11, 121 N 120 ist keine Quadratzahl, denn es gibt keine natürliche Zahl b für die gilt: 120 = b * b. Die kleinsten 10 Quadratzahlen sind: (0), 1, 4, 9, 16, 25, 36, 49, 64, 81, Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

5 Reelle Zahlen  Irrationale Zahlen Die Quadratwurzeln aller Zahlen, die sich nicht als ganze Zahlen (rationale Zahlen) darstellen lassen, werden irrationale Zahlen genannt. Diese Zahlen sind unendliche, nicht periodische Dezimalzahlen, d.h., ihre Nachkommastellen ergeben keine Periode. Diese Zahlen lassen sich daher nicht als Bruch zweier ganzer Zahlen anschreiben, sie sind also nicht rational. Irrationale Zahlen können im Dezimalsystem nur näherungsweise angegeben werden.  Beispiele: √3 = 1, … ~ 1,73 √32 = 5, ….~ 5, Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

6 Reelle Zahlen  Quadratwurzeln und Irrationale Zahlen Satz: Die Wurzel aus einer natürlichen Zahl ist entweder eine natürliche Zahl (bzw. deren negatives Äquivalent) oder sie ist irrational.  Beispiele: √4 = 2 (natürliche Zahl) bzw. -2 (negatives Äquivalent) √5 = 2, ….~ 2,24 (irrationale Zahl) Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

7 Reelle Zahlen  Rechenregeln mit Quadratwurzeln Die Wurzel einer Summe ist nicht gleich der Summe der Wurzeln: √(a + b) ≠ √a + √b Die Wurzel einer Differenz ist nicht gleich der Differenz der Wurzeln: √(a – b) ≠ √a – √b  Beispiele: 3,60555… = √13 = √(9 + 4) ≠ √9 + √4 = = 5 2,23606… = √5 = √(9 – 4) ≠ √9 – √4 = 3 – 2 = Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

8 Reelle Zahlen  Rechenregeln mit Quadratwurzeln Die Wurzel eines Produktes ist gleich dem Produkt der Wurzeln: √(a * b) = √a * √b Die Wurzel eines Quotienten ist gleich dem Quotienten der Wurzeln: √(a / b) = √a / √b  Beispiele: 6 = √36 = √(9 * 4) = √9 * √4 = 3 * 2 = 6 2 = √4 = √(16 / 4) = √16 / √4 = 4 / 2 = Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

9 Reelle Zahlen  Kubikwurzeln Eine Zahl x heißt Kubikwurzel einer Zahl a, wenn x 3 = a ist.  Die Zahl x muss positiv sein, wenn a positiv ist.  Die Zahl x muss negativ sein, wenn a negativ ist.  Beispiele: a = 8  x = 2, weil 2 * 2 * 2 = 8 a = – 8  x = – 2, weil (– 2) * (– 2) * (– 2) = – Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

10 Reelle Zahlen  Kubikzahlen Eine natürliche Zahl a heißt Kubikzahl, wenn sie die dritte Potenz einer natürlichen Zahl b ist: a = b 3 (a, b N). Beispiele: 27 ist Kubikzahl, denn 3 * 3 * 3 = 27 und 3, 27 N 36 ist keine Kubikzahl, denn es gibt keine natürliche Zahl b für die gilt: 36 = b * b * b. Die kleinsten 10 Kubikzahlen sind: (0), 1, 8, 27, 64, 125, 216, 343, 512, 729, Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

11 R: Reelle Zahlen Reelle Zahlen  Zahlenmengen - Mengendiagramm Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0 Z: Ganze Zahlen {… -2, -1, 0, 1, 2, …} N: Natürliche Zahlen {(0), 1, 2, 3, …} Q: Rationale Zahlen {z.B. ½, 0.25, 3.4, …} I: Irrationale Zahlen {z.B. √2, √3, …} Z ist Teilmenge von Q Q ist Teilmenge von R N ist Teilmenge von Z I ist Teilmenge von R

12 Reelle Zahlen  Reelle Zahlen auf der Zahlengeraden Jeder reellen Zahl ist genau ein Punkt auf der Zahlengeraden zugeordnet und umgekehrt.  Unendlichkeit der Reellen Zahlen Es gibt unendlich viele reelle Zahlen. Zwischen zwei beliebigen reellen Zahlen gibt es unendlich viele reelle Zahlen. Beweis: Seien a und b zwei beliebige reelle Zahlen, dann liegt c = (a + b) / 2 zwischen a und b. In gleicher Weise kann man eine Zahl finden, die zwischen a und c liegt usw Mathematik macht Spaß! Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

13 Reelle Zahlen Mathematik macht Spaß! 13  Zusammenfassung  Eine Zahl x heißt Quadratwurzel einer Zahl a  0, wenn x 2 = a ist.  Quadratwurzeln lassen sich darstellen als ganze Zahlen (Teilmenge der rationalen Zahlen) darstellen oder als irrationale Zahlen (unendliche, nicht periodische Dezimalzahlen).  Die Vereinigung der rationalen und irrationalen Zahlen ergibt die Menge der reellen Zahlen.  Die Wurzel einer Summe/Differenz ist nicht gleich der Summe/Differenz der Wurzeln.  Die Wurzel eines Produktes/Quotienten ist gleich dem Produkt/Quotient der Wurzeln. Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

14 Reelle Zahlen Mathematik macht Spaß! 14  Aufgaben  Wie viele Lösungen hat √36 ?  Welche Quadratzahlen liegen im Bereich 200 bis 300 ?  Wie viele reelle Lösungen gibt es für √-16 ?  Ist die Kubikwurzel einer negativen Zahl positiv oder negativ ?  Ist die Quadratwurzel einer positiven Zahl positiv oder negativ ?  Warum kann eine irrationale Zahl nur näherungsweise angegeben werden ?  Wie wird die Zahlenmenge R \ Q (R ohne Q) bezeichnet ?  81 * 25 = Berechne im Kopf: √2025  Welche der folgenden Aussagen ist richtig: Die Wurzel eines Quotienten ist gleich dem Quotient der Wurzeln. Die Wurzel einer Differenz ist gleich der Differenz der Wurzeln. Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0

15 Reelle Zahlen Mathematik macht Spaß! 15 ENDE Dipl.Ing.Bernhard Schleser Auf der Schmelz, 2013/14 4.Klasse V 1.0


Herunterladen ppt "√2, √3, √5, … V 0.1 Grundrechenarten Reelle Zahlen."

Ähnliche Präsentationen


Google-Anzeigen