Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

E =1 2πi2πi i=1 v = Σ λ v ii n Was ist Mathematik? Didaktik der Mathematik Referenten: Luise Mielke und Martin Herold Dozent: Professor Jahnke.

Ähnliche Präsentationen


Präsentation zum Thema: "E =1 2πi2πi i=1 v = Σ λ v ii n Was ist Mathematik? Didaktik der Mathematik Referenten: Luise Mielke und Martin Herold Dozent: Professor Jahnke."—  Präsentation transkript:

1 e =1 2πi2πi i=1 v = Σ λ v ii n Was ist Mathematik? Didaktik der Mathematik Referenten: Luise Mielke und Martin Herold Dozent: Professor Jahnke

2 e =1 2πi2πi i=1 v = Σ λ v ii n Gliederung 1. Überblick 2. Diskussionsrunde Was ist Mathe Anwendung Notwendigkeit Gebiete Gefühle 3. Was denkt wer über Mathematik? 4. Darf ich vorstellen: Mathematik 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Fibonacci, Euler, Gauß, Cantor – Damals und Heute 6. Aufbau einer jeden Mathematik 7. Mathematische Teilgebiete 8. Instrumente der Mathematik – Damals und Heute 9. Mathematik ist nützlich: Anwendungsbereiche der Mathematik 10. Was ist ein Mathematiker? 11. Reflexion der Diskussionsrunde

3 e =1 2πi2πi i=1 v = Σ λ v ii n 2. Diskussionsrunde Was ist Mathematik

4 e =1 2πi2πi i=1 v = Σ λ v ii n 2. Diskussionsrunde Anwendung

5 e =1 2πi2πi i=1 v = Σ λ v ii n 2. Diskussionsrunde Notwendigkeit

6 e =1 2πi2πi i=1 v = Σ λ v ii n 2. Diskussionsrunde Gebiete

7 e =1 2πi2πi i=1 v = Σ λ v ii n 2. Diskussionsrunde Eure Gefühle für Mathematik

8 e =1 2πi2πi i=1 v = Σ λ v ii n Die Mathematik muss man schon deswegen studieren, weil sie die Gedanken ordnet. (M.W. Lomonossow) Die Mathematik ist eine Art Spielzeug, welches die Natur uns zuwarf zum Troste und zur Unterhaltung in der Finsternis. (Jean-Jacques Rousseau) Das Wesen der Mathematik liegt in ihrer Freiheit. (Georg Cantor) Jede Wissenschaft bedarf der Mathematik, die Mathematik bedarf keiner. (Jakob I. Bernoulli) 3. Was denkt wer über Mathematik?

9 e =1 2πi2πi i=1 v = Σ λ v ii n Du wolltest doch Algebra, da hast du den Salat. (Jules Verne) Wer die erhabene Weisheit der Mathematik tadelt, nährt sich von Verwirrung. (Leonardo da Vinchi) Alles was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. (Rene Descartes) Wer die Geometrie begreift, vermag in dieser Welt alles zu verstehen. (Galileo Galilei) Die Natur ist in der Sprache der Mathematik geschrieben. (Galileo Galilei) Math is like Ophelia in Hamlet charming and a bit mad. (Alfred North Whitehead) 3. Was denkt wer über Mathematik?

10 e =1 2πi2πi i=1 v = Σ λ v ii n 4. Darf ich vorstellen: Mathematik Altgriechisches Verb: manthánō : Ich lerne Griechisches Adjektiv: mathēmatikē : zum Lernen gehörig Wissenschaft welche aus der Untersuchung von Figuren und dem Rechnen mit Zahlen entstand Bis heute ist keine allgemeingültige Definition existent Auch streitet man darüber ob Mathematik zu den Naturwissenschaften gehört, oder vielleicht sogar zur Philosophie Auf jeden Fall gilt sie als die älteste Wissenschaft Mathematisches Grundverständnis gilt als Vorraussetzung zum Verständnis aller Geistes- und Naturwissenschaften (frei nach Platon) Deduktiver Charakter von der Hypothese zur Schlussfolgerung

11 e =1 2πi2πi i=1 v = Σ λ v ii n Mathematik ist kumulativ Alles baut aufeinander auf mittlerweile derart viele spezielle Teilgebiete unmöglich die gesamte Mathematik zu kennen Mathematiker spezialisieren sich deshalb nur auf wenige Teilgebiete Ziel: Finden einer interessanten ewigen Wahrheit einmal streng logisch bewiesen: zeitlose Wahrheit einmal Mathematik, immer Mathematik exakte Wissenschaft Mathematiker arbeiten heutzutage innerhalb inter- nationaler Netzwerke zusammen, denn bis jetzt und in nächster Zukunft gilt es noch viele mathematische Probleme zu lösen 4. Darf ich vorstellen: Mathematik

12 e =1 2πi2πi i=1 v = Σ λ v ii n Die Sprache der Mathematik besteht aus Formeln und Fachbegriffen Obwohl sie die grundlegendste aller Wissenschaften ist, gibt es für sie keinen Nobelpreis Mathematik ist allgegenwärtig (vgl. Anwendungsgebiete) Mathematik polarisiert seit Jahrhunderten die Menschheit entweder man hasst sie, oder man liebt sie 4. Darf ich vorstellen: Mathematik

13 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Kurzer Zeitablauf: Babylonien v.Chr Ägypten v.Chr. Griechenland v.Chr. Griechisch-Römisches Imperium n.Chr. Islamische Welt n.Chr. Westliche Welt n.Chr. Moderne1600 n.Chr. - Heute

14 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Babylonien v.Chr Zahlen basieren auf einem Hexadesinal System Es können alle natürlichen Zahlen dargestellt werden Und Rationale Zahlen mit Nenner mit Primfaktorzerlegung 2,3,5 enthalten. Besaßen Geometrisch Aufgaben von Typ: Man hat x Meter Zaun und muss eine Fläche Y umschließen, wie müssen a und b geschaffen sein. Erste Aufgaben ohne Zweck nur zum Rechnen üben Rechneten überwiegend mit Multiplikationstabellen

15 e =1 2πi2πi i=1 v = Σ λ v ii n

16 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Ägypten v.Chr. Zahlen basieren auf einem Dezimalsystem Es können alle natürlichen Zahlen dargestellt werden Und Rationale Zahlen mit Zähler 1 Brüche von anderem Typ müssen in Stamm Bruchdarstellung geschrieben werden Konnten bereits Volumen der Pyramiden exakt bestimmen Lineare und Quadratische Gleichungen konnten geometrisch gelöst werden Begründung der Geometrischen Algebra Erste Aufgabensammlung in den Papyrus-Rind und Papyrus-Moskau

17 e =1 2πi2πi i=1 v = Σ λ v ii n

18 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Griechenland v.Chr. Vertreter: Thales von Milet Pythagoras und die Pythagoreer Hippasos von Metapont Eudoxos Aristoteles Hippokrates Euklid Archimedes

19 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Thales von Milet Formulierter mehrere geometrische Sätze Unter anderem: Satz des Thales

20 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Pythagoras und die Pythagoreer Die Zahl rückt in den Mittelpunkt. Prägen den begriff der Kommensurabilität Zwei gleichartige Größen besitzen steht eine Einheit, so dass Die Größen ein Verhältnis haben. Seinen G1 und G2 gleichartig ex. Einheit e, so dass m*e = G1 und n*e = G2 G1 : G2 = m : n

21 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Hippasos von Metapont Entdeckte als erster Inkommensurable Größen im Ordenszeichen der Pythagoreer d/s Q s d

22 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Eudoxos Löst Problem durch das Prinzip des Eudoxos a : x = x : b a/x = x/b x = ab x = ab Diese Anschauung löst Problem der Quadrate ohne die Wurzel zu betrachten 2 wir

23 e =1 2πi2πi i=1 v = Σ λ v ii n 5. Geschichtlicher Abriss 3000 v. Chr. – 0 - die Kindheit der Mathematik Euklid Schrieb die Elemente, ist eine Zusammenfassung der bekannten Mathematik in 13 Büchern Aufbau: Axiome, Postulate, Beweise Buch I Geometrie Buch VII Mengentheorie Buch XIII Platonische Körper

24 e =1 2πi2πi i=1 v = Σ λ v ii n Leonardo von Paris, Filius Bonacci (Sohn des Bonacci) geschätzte Lebensdaten Rechenmeister aus Paris Bedeutendster Mathematiker des Mittelalters Bereiste Mittelmeerraum und arabische Länder Schrieb 1202 die Erkenntnisse der Reisen über Algebra und Arithmetik in seinem Werk Liber Abaci (Buch des Rechnens) nieder Darin beschrieb er auf Latein die schriftlichen Rechenverfahren, die wir heute in der Grundschule erlernen 5. Geschichtlicher Abriss Leonardo Fibonacci

25 e =1 2πi2πi i=1 v = Σ λ v ii n Führte die arabische Schreibweise der Zahlen in Europa ein, und löste damit die Römische ab Fibonacci Folge: f n =f n-1 +f n-2 f 1 =1, f 2 =1 Quotient zweier Folgeglieder konvergiert gegen goldenen Schnitt 5. Geschichtlicher Abriss Leonardo Fibonacci

26 e =1 2πi2πi i=1 v = Σ λ v ii n Die Fibonacci-Spirale

27 e =1 2πi2πi i=1 v = Σ λ v ii n Französischer Jurist Freizeit-Mathematiker Studierte die Schriften von Euklid und Apollionus befasste sich mit der Zahlentheorie, Wahrscheinlichkeitsrechnung und Differentialrechnung Untersuchte Minimum und Maximum sowie die Zusammensetzung und Zerlegung von Zahlen 5. Geschichtlicher Abriss Pierre de Fermat

28 e =1 2πi2πi i=1 v = Σ λ v ii n Und trug damit einen wesentlichen Teil zur Entwicklung der analytischen Geometrie bei Nach ihm sind die Fermat`schen zahlen und der kleine und große Fermat`sche Satz benannt Fermats großer Satz: a^n+b^n=c^n kann nur für n=2 gelten Großer Satz konnte erst 300 Jahre später durch Andrew Whiles bewiesen werden (jedenfalls die Theorie dahinter) 5. Geschichtlicher Abriss Pierre de Fermat

29 e =1 2πi2πi i=1 v = Σ λ v ii n Basel / Schweiz Studierte bei Johann Bernoulli Erblindete 1771 forschte trotzdem noch weiter viele mathematische Symbole (Summenzeichen, e) gehen auf ihn zurück gilt als Begründer der Analysis Beschäftigte sich mit Differential- und Integralrechnung, Zahlentheorie, Algebra Insgesamt gibt es 866 Publikationen von Euler, darunter: 5. Geschichtlicher Abriss Leonhard Euler

30 e =1 2πi2πi i=1 v = Σ λ v ii n "Introductio in analysin infinitorum" 1748 Begriff der Funktion f(x) Über 50x Euler: Eulersche Zahl: e; Eulerschen Relation: e^iπ+1=0 "Lettres à une princesse d'Allemagne" (1768) Grundzüge der Physik, der Astronomie, der Mathematik, der Philosophie und der Theologie Euler fehlte nur eine Eigenschaft zu einem vollkommenen Genie: nämlich unverständlich zu sein. (Georg Ferdinand Frobenius 1917) Euler erfand das Mathematik-Rätsel-Spiel Soduko 5. Geschichtlicher Abriss Leonhard Euler

31 e =1 2πi2πi i=1 v = Σ λ v ii n Braunschweig/ Deutschland Gilt als Fürst der Mathematiker Motto: 'Pauca sed matura' (Weniges, aber Reifes) Konnte eher rechnen als sprechen (er über sich) Soll bereits mit 3 Jahre die Lohnabrechnung seines Vaters korrigiert haben, galt als wahres Wunderkind, deswegen gefördert und unterstützt Grundschule: benutzte Summenformel: s=n(n+1)/2 (der kleine Gauß) 5. Geschichtlicher Abriss Carl-Friedrich Gauß

32 e =1 2πi2πi i=1 v = Σ λ v ii n Entwickelte die Methode der kleinsten Quadrate (Flächeninhaltsberechnungen), bewies Fundamentalsatz der Algebra (1799), konstruierte mit Zirkel und Lineal regel- mäßiges 17-Eck, entwickelte Anwendung unendlicher Reihen (Wesen der Analysis) 1801: Disquisitiones Arithmeticae - Zahlentheorie Mit 19 vermass er im Auftrag des Königs Georg IV dessen Reich Hannover Nach im benannt: Gaußsche Glockenkurve, Eliminationsverfahren 5. Geschichtlicher Abriss Carl-Friedrich Gauß

33 e =1 2πi2πi i=1 v = Σ λ v ii n

34 e =1 2πi2πi i=1 v = Σ λ v ii n

35 e =1 2πi2πi i=1 v = Σ λ v ii n deutscher Mathematiker Schüler von Weierstrass und Kronecker Litt seit dem 41 Lebensjahr an manischer Depression Gilt als Begründer der Mengenlehre Beschäftigte sich mit Äquivalenz, Mächtigkeit und Abzählbarkeit von Mengen und entwickelte das noch heute verwendete Diagonalverfahren 5. Geschichtlicher Abriss Georg Cantor

36 e =1 2πi2πi i=1 v = Σ λ v ii n Entwickelte Theorie der Kardinalzahlen, bewies Überabzählbarkeit der reellen Zahlen Zeigte auch Interesse an Philosophie und Literaturwissenschaft suchte nach wahrem Autor der Shakespeare Stücke War Mitbegründer und Vorsitzender der deutschen Mathematiker-Vereinigung (1890) "Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können." (David Hilbert) 5. Geschichtlicher Abriss Georg Cantor

37 e =1 2πi2πi i=1 v = Σ λ v ii n Das Diagonalverfahren

38 e =1 2πi2πi i=1 v = Σ λ v ii n 6. Aufbau einer jeden Mathematik Alles beginnt bei den Axiomen Grundsatz, als gültig anerkannt muss (kann oft) nicht bewiesen werden Aus den Axiomen werden Aussagen hergeleitet, die sich, einmal streng logisch bewiesen, Satz nennen dürfen Die wichtigsten Sätze sind Fundamentalsätze Zum Beweis des Satzes werden häufig Lemmata (Hilfssätze zu gezogen) Lemmata beweisen einfache aber nicht triviale Tatsachen der Mathematik, welche Vorraussetzungen für ein Satz darstellen

39 e =1 2πi2πi i=1 v = Σ λ v ii n Definitionen, auf Eigenschaften eines Sachverhaltes basierende Benennung/ Bezeichnung Einfache Schlussfolgerungen aus den Sätzen und Definitionen nennt man Korollar (lat. Die Zugabe) Beweise folgen auf Grundlage des Satzes und sind oft mit wenig Zeitaufwand durchführbar 6. Aufbau einer jeden Mathematik

40 e =1 2πi2πi i=1 v = Σ λ v ii n Geometrie Arithmetik Algebra Mengenlehre Diff. Gleichung Topologie usw. Analysis Differenzial-/ Integralrechnung usw. Funktionen- theorie Numerik 7. Mathematische Teilgebiete

41 e =1 2πi2πi i=1 v = Σ λ v ii n 7. Mathematische Teilgebiete Bis 1868 gab es folgende Forschungsgebiete Geschichte und Philosophie Analytische Geometrie Algebra Synthetische Geometrie Zahlentheorie Mechanik Wahrscheinlichkeitsrechnung Mathematische Physik Reihen Geodäsie und Astro. Diff.- / Integralrechnung Funktionentheorie und 38 Unterabteilungen 1979 bereits ca. 4000

42 e =1 2πi2πi i=1 v = Σ λ v ii n 8. Instrumente der Mathematik – Damals und Heute Kopf? Finger? Sand?.... Tafel? Kreide?... Zettel? Stift?

43 e =1 2πi2πi i=1 v = Σ λ v ii n Während Archimedes in die Mathematik vertieft Formeln in den Sand schreibt, bemerkt er nicht, dass hinter im der Krieg beginnt

44 e =1 2πi2πi i=1 v = Σ λ v ii n 8. Instrumente der Mathematik – Damals und Heute Kopf? Finger? Sand?.... Tafel? Kreide?... Zettel? Stift? Mathematik wird mit einem Minimum an Instrumenten und einem Maximum an Hirntätigkeit betrieben klassische Sicht Minimum der Instrumente: Schreibutensil wichtig zur Verbreitung und Überlieferung Lineal und Zirkel Konstruktionen in der euklidischen Geometrie (zur Konstruktion regelmäßiger n-Ecke) Abakus (Rechentafel, 1100 v. Chr. Erfunden) Arithmetik)

45 e =1 2πi2πi i=1 v = Σ λ v ii n

46 e =1 2πi2πi i=1 v = Σ λ v ii n 8. Instrumente der Mathematik – Damals und Heute Kopf? Finger? Sand?.... Tafel? Kreide?... Zettel? Stift? Mathematik wird mit einem Minimum an Instrumenten und einem Maximum an Hirntätigkeit betrieben klassische Sicht Minimum der Instrumente: Schreibutensil wichtig zur Verbreitung und Überlieferung Lineal und Zirkel Konstruktionen in der euklidischen Geometrie Abakus (Rechentafel, 1100 v. Chr. erfunden) Arithmetik Rechenschieber Multiplikation/ Division

47 e =1 2πi2πi i=1 v = Σ λ v ii n Der Rechenschieber (Anfang 20. Jahrhundert)

48 e =1 2πi2πi i=1 v = Σ λ v ii n 8.Instrumente der Mathematik – Damals und Heute Kopf? Finger? Sand?.... Tafel? Kreide?... Zettel? Stift? Mathematik wird mit einem Minimum an Instrumenten und einem Maximum an Hirntätigkeit betrieben klassische Sicht Minimum der Instrumente: Schreibutensil wichtig zur Verbreitung und Überlieferung Lineal und Zirkel Konstruktionen in der euklidischen Geometrie Abakus (Rechentafel, 1100 v. Chr. erfunden) Arithmetik Rechenschieber Multiplikation/ Division) Taschenrechner (Berechnung von Wurzeln, Logarithmen etc.) Computer kann dem Mathematik-Betreibenden viel Arbeit abnehmen (Maple), ist deswegen aber auch manchmal verpönt. Dient weiterhin zur Veranschaulichung

49 e =1 2πi2πi i=1 v = Σ λ v ii n 9.Mathematik ist nützlich: Anwendungsbereiche der Mathematik Intergal- und Differenzialrechung Physik (Mechanik) Vektorgeometrie Physik, Architektur Variationsrechnung Physik (Beschreibung (Lagrange) komplexer Bewegungsprozesse Reihenentwicklung Approximation von Funktionen (Taylor, Fourier) Geologie, Physik

50 e =1 2πi2πi i=1 v = Σ λ v ii n Taylorreihe

51 e =1 2πi2πi i=1 v = Σ λ v ii n Fourierreihe Grad n=10Grad n=30

52 e =1 2πi2πi i=1 v = Σ λ v ii n Grad n=50 Grad n=70

53 e =1 2πi2πi i=1 v = Σ λ v ii n 9.Mathematik ist nützlich: Anwendungsbereiche der Mathematik Intergal- und Differenzialrechung Physik (Mechanik) Vektorgeometrie Physik, Architektur Variationsrechnung Physik (Beschreibung (Lagrange) komplexer Bewegungsprozesse Reihenentwicklung Approximation von Funktionen (Taylor, Fourier) Geologie, Physik Stochastik Wirtschaft, Physik (Quantenphysik)

54 e =1 2πi2πi i=1 v = Σ λ v ii n Numerik Binärzahlen Computerkodes 9.Mathematik ist nützlich: Anwendungsbereiche der Mathematik

55 e =1 2πi2πi i=1 v = Σ λ v ii n Binärzahlen

56 e =1 2πi2πi i=1 v = Σ λ v ii n Numerik Binärzahlen Computerkodes Permutation Kryptographie 9.Mathematik ist nützlich: Anwendungsbereiche der Mathematik

57 e =1 2πi2πi i=1 v = Σ λ v ii n Kryptographie

58 e =1 2πi2πi i=1 v = Σ λ v ii n Numerik Binärzahlen Computerkodes Permutation Kryptographie Sphärische Geometrie Landvermessung 9.Mathematik ist nützlich: Anwendungsbereiche der Mathematik

59 e =1 2πi2πi i=1 v = Σ λ v ii n 10. Was ist ein Mathematiker? Drei Richtungen des Mathematischen Denkens Platonismus: Mathematische Objekte sind real. (Unendliche Mengen, raumfüllende Kurven) Objekte sind unveränderlich Jede sinnvolle Frage über Objekte hat präzise Antwort Für Platonisten ist Mathematik eine empirische Wissenschaft, sie kann nichts erfinden was nicht da ist. Es bleibt nur vorhandenes zu entdecken.

60 e =1 2πi2πi i=1 v = Σ λ v ii n 10. Was ist ein Mathematiker? Drei Richtungen des Mathematischen Denkens Formalismus: Mathematiker geht davon aus, dass es solche Objekte nicht gibt Mathematik besteht aus Axiome, Definitionen und Sätzen Also aus Formeln Formeln geben keine Auskunft über ihren Inhalt, weis zwar das seine Umformungen in anderen Gebieten Anwendbar sind interessiert sich aber nicht dafür. Formel hat unabhängig vom Wahrheitswert der Aussage keine Bedeutung

61 e =1 2πi2πi i=1 v = Σ λ v ii n 10. Was ist ein Mathematiker? Drei Richtungen des Mathematischen Denkens Konstruktivismus: Für Konstruktivist ist echte Mathematik, was sind durch endliche Konstruktion erzeugen lässt Menge der reelen Zahlen ist nicht Existent

62 e =1 2πi2πi i=1 v = Σ λ v ii n 10. Was ist ein Mathematiker? Der Ideale Mathematiker Versteckt sich in seiner dunklen Kammer Zurückgezogen Beschäftigt sich mit einem Thema, das nur 100 Leute kennen und 12 verstehen Flüchtet sich bei Diskussionen in Formalismen Spricht auch im normalen Leben in mathematischer Sprache Seine Hilfsmittel sind Stift und Kopf Hält sein Gebiet für das wichtigste überhaupt Fühlt sich nur wohl, wenn 80% des Tages mit nachdenken verbringen kann, selbst im Schlaf

63 e =1 2πi2πi i=1 v = Σ λ v ii n 10. Was ist ein Mathematiker? Was der reale Mathematiker sein sollte Weltoffen Beschäftigt sich nebenbei noch mit anderen Teilgebieten Ist auch einwenig philosophisch Hält den Kopf für wichtig, weis aber auch andere Medien zu nutzen (wie Computer) Kann sein Forschungsgebiet anschaulich erklären, da es ihm auch um die Weitergabe seines Wissens geht Kann Diskussionen folgen ohne sich in Formalismen zurück zu ziehen Ist bereit auch andere Meinungen und Beweisideen annehmen und daraus lernen Hält seinen Tag für zu kurz und von Nacht wollen wir hier gar nicht erst reden

64 e =1 2πi2πi i=1 v = Σ λ v ii n 11. Reflexion der Diskussionsrunde

65 e =1 2πi2πi i=1 v = Σ λ v ii n Mathematics may be defined as the subject in which we never know what we are talking about, nor whether what we are saying is true. "So kann also die Mathematik definiert werden als diejenige Wissenschaft, in der wir niemals das kennen, worüber wir sprechen, und niemals wissen, ob das, was wir sagen, wahr ist." Bertrand Russell

66 e =1 2πi2πi i=1 v = Σ λ v ii n Quellen homepages.tesco.net homepage.ruhr-uni-bochum.de/.../bw5.JPG


Herunterladen ppt "E =1 2πi2πi i=1 v = Σ λ v ii n Was ist Mathematik? Didaktik der Mathematik Referenten: Luise Mielke und Martin Herold Dozent: Professor Jahnke."

Ähnliche Präsentationen


Google-Anzeigen