Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik Chemische Verfahrenstechnik Teil 3 Chemische Thermodynamik.

Ähnliche Präsentationen


Präsentation zum Thema: "Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik Chemische Verfahrenstechnik Teil 3 Chemische Thermodynamik."—  Präsentation transkript:

1 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik Chemische Verfahrenstechnik Teil 3 Chemische Thermodynamik Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Wärmezufuhr Kühlung

2 Chemische Verfahrenstechnik chemische Thermodynamik Die chemische Thermodynamik liefert folgende Informationen: 1.Berechnung der Reaktionsenthalpien (Welche Wärmemenge muss zu- oder abgeführt werden?) - Berechnung aus Bildungsenthalpien auf der Grundlage von Tabellenwerken - Berechnung aus bekannten Reaktionen (Hess´scher Satz) 2.Berechnung chemischer Gleichgewichte (Betrachtung von reversiblen Reaktionen) 3.Aussage über die Richtung des Ablaufs chemischer Reaktionen Die Thermodynamik ist die Lehre von den Energieänderungen im Verlaufe von physikalischen und chemischen Vorgängen. Sie behandelt stets Gleichgewichtszustände von chemischen Reaktionen und ermöglicht damit die Voraussage, ob eine bestimmte chemische Reaktion unter gegebenen Bedingungen abläuft oder nicht. So ist beispielsweise das Massenwirkungsgesetz ein Ergebnis thermodynamischer Betrachtungsweise. Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

3 Chemische Verfahrenstechnik chemische Thermodynamik a.Berechnung der Reaktionsenthalpie aus den Bildungsenthalpien der einzelnen Reaktionspartner bei Standardbedingungen (25 °C (298,15 K) und 101,3 kPa (1,013 bar)) : b.Berechnung der Reaktionsenthalpie bei Reaktionstemperatur: 1.Berechnung der Reaktionsenthalpie c)Berechnung der Wärmekapazität des Gemisches (11) (12) (13) - Berechnung aus bekannten Bildungsenthalpien Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

4 Chemische Verfahrenstechnik chemische Thermodynamik Werden die Enthalpien oder Wärmekapazitäten auf ein mol bezogen, werden kleine Buchstaben verwendet: ΔHRΔHR mol = Δh R ΔCPΔCP mol = Δc p In den verschiedenen Lehrbüchern werden für die Bildungsenthalpien z.T. unterschiedliche Indizes verwendet. Im angelsächsischen Raum wird f für Formation und im deutschen Sprachraum B für Bildung eingesetzt. Die hochgestellten Indizes zeigen an, dass der Bezug die Standardbedingungen sind. Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

5 Beispiel: Ammoniak-Verbrennung bei 873 K 4 NH O 2 4 NO + 6 H 2 O Standardbildungsenthalpien [kJ/mol] bei 298 K 1 NH 3 O 2 NO H 2 O - 46,2 0 90,4 -241,6 Die Reaktionsenthalphie errechnet sich bei 298 K (11): Δh R ɵ (289 K, P ɵ ) = - 903,2 kJ/mol Δh R ɵ (T ɵ, P ɵ ) = [4(90,4) + 6(-241,6)] – [4(-46,2) + 5(0)] Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

6 Chemische Verfahrenstechnik chemische Thermodynamik Beispiel: Ammoniak-Verbrennung bei 873 K 4 NH O 2 4 NO + 6 H 2 O spezifische Wärmekapazitäten [J/mol x K] 2 NH 3 O 2 NO H 2 O Berechnung der molare Wärmekapazität nach (13): Δc p = [4(29) + 6(36)] – [4(42) + 5(29)] Δc p = 19 J/mol x K = 0,019 kJ/ mol x K Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

7 Chemische Verfahrenstechnik chemische Thermodynamik Beispiel: Ammoniak-Verbrennung bei 873 K 4 NH O 2 4 NO + 6 H 2 O Reaktionsenthalpie nach (12) für 873 K: 3 Δh R (873 K) = Δh R ɵ (298 K) + Δc p x 575 K Δh R (873 K) = - 903,2 + 0,019 x 575 = - 892,3 kJ/mol Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

8 Chemische Verfahrenstechnik chemische Thermodynamik - Berechnung der Reaktionsenthalpie aus bekannten Reaktionen (Hess´scher Satz) Die molare Reaktionsenthalpie hängt nur vom Anfangs- und Endzustand des chemischen Systems ab. Sie ist vom Reaktionsweg unabhängig. Beispiel: Graphit kann direkt zu Kohlenstoffdioxid verbrannt werden (1) oder indirekt über die Zwischenstufe Kohlenstoffmonoxid (2), (3). Die Gesamtreaktionsenthalpie Δ R H ist in beiden Fällen gleich: Grundsätze nach dem Hess´schen Satz: Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

9 Chemische Verfahrenstechnik chemische Thermodynamik 2.Berechnung des chemischen Gleichgewichtes (kinetische Betrachtung) Bei reversiblen Reaktionen stellt sich ein Gleichgewicht von Hin- und Rückreaktion ein. Das Verhältnis von Hin- und Rückreaktion wird allgemein mit der Gleichgewichtskonstanten K beschrieben (Massenwirkungsgesetz). Je nach Mengenangabe für die Komponenten (A, B, C, D) werden unterschiedliche Gleichgewichtskonstanten verwendet: K c für Konzentrationen c i (in Lösung) (14) K p für den Partialdruck p i (bei Gasreaktionen) (15) K x für den Stoffmengenanteil x i (16) Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

10 Chemische Verfahrenstechnik chemische Thermodynamik Ist K >> 1, dann läuft die Reaktion nahezu vollständig in Richtung der Produkte ab. Die Edukte sind im Gleichgewicht nur noch in sehr geringer Konzentration vorhanden. Ist K 1, dann liegen im Gleichgewichtszustand alle Reaktionsteilnehmer in vergleichbar großen Konzentrationen vor. Ist K << 1, dann läuft die Reaktion praktisch nicht ab, und im Gleichgewichtszustand sind ganz überwiegend die Edukte vorhanden. Die verschiedenen Gleichgewichtskonstanten lassen sich durch einfache Beziehungen ineinander umrechnen. Allgemein gilt: Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

11 Chemische Verfahrenstechnik chemische Thermodynamik A + B C + D Die Gleichgewichtslage kann durch Änderung folgender Größen beeinflusst werden: Änderung der Konzentrationen der Reaktionsteilnehmer Temperaturänderung Druckänderung (bei Reaktionen, bei denen sich die Gesamtstoffmenge der gasförmigen Reaktionspartner ändert.) Prinzip des kleinsten Zwanges (von Le Chatelier) Übt man auf ein System, das im Gleichgewicht ist, durch Druckänderung, Temperaturänderung oder Konzentrationsänderung einen Zwang aus, so verschiebt sich das Gleichgewicht, und zwar so, dass sich ein neues Gleichgewicht einstellt, bei dem diese Zwang vermindert ist. Wie kann das chemische Gleichgewicht verändert werden, um höhere Umsätze zu erreichen? Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

12 Chemische Verfahrenstechnik chemische Thermodynamik Abhängigkeit von der Konzentration bzw. vom Partialdruck: Wenn es gelingt, aus einem Reaktionsgemisch während der Reaktion das Produkt zu entfernen, verschiebt sich das Gleichgewicht zur rechten Seite. Der Partialdruck von NH 3 wird vermindert, womit K p in Gleichung 15 steigt. Beispiel Ammoniaksynthese: N H 2 2 NH 3 Δh° = -92 KJ/mol Abhängigkeit vom Gesamtdruck: Die Druckerhöhung übt einen Zwang auf die gasförmigen Reaktanden aus. Da auf der Produktseite die Stoffmengenkonzentration der Gase geringer ist (rechte Seite 2 Mole; linke Seite 4 Mole), wird das Gleichgewicht nach rechts verschoben. Der Umsatz kann somit durch Druckerhöhung gesteigert werden! Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

13 Chemische Verfahrenstechnik chemische Thermodynamik Abhängigkeit von der Temperatur: Die Gleichgewichtskonstante K ist von der Temperatur abhängig. Die Temperaturabhängigkeit wird von der van´t Hoffschen Gleichung beschrieben: d lnK ΔH R dT R T 2 = van´t Hoff Gleichung (17) Die Temperaturabhängigkeit der Konstanten K wird entscheidend vom Vorzeichen der Reaktionsenthalpie bestimmt!! Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

14 Chemische Verfahrenstechnik chemische Thermodynamik exotherme Reaktion endotherme Reaktion Umsatz der Komponente A Temperatur T 1 K << 1 nur sehr geringe Umsätze möglich Temperaturabhängigkeit der Gleichgewichtskonstanten d lnK ΔH R dT R T 2 = van´t Hoff Gleichung (18) K 1 näherungsweise irreversible Reaktion Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

15 Chemische Verfahrenstechnik chemische Thermodynamik Schlussfolgerung: Bei endothermen Reaktionen verschiebt sich das Gleichgewicht mit steigender Temperatur zur Produktseite. Höhere Ausbeute des Produktes! Bei exothermen Reaktionen verschiebt sich das Gleichgewicht mit steigender Temperatur zur Eduktseite. Die Ausbeute des Produktes sinkt! Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

16 Chemische Verfahrenstechnik chemische Thermodynamik Wie kann die Gleichgewichtkonstante berechnet werden? 1.Möglichkeit: Berechnung über die Konzentrationen, Partialdrücke oder Molanteile (Gleichungen ) 2.Möglichkeit: Berechnung mit Hilfe der freien Enthalphie ΔG Δ G ist ein Maß für die Fähigkeit eines Systems Arbeit zu verrichten. Je größer der negative Wert ist, desto mehr Arbeit vermag ein System zu leisten, desto reaktiver ist es. Wenn ein System im Gleichgewicht ist, hat es keine Fähigkeit mehr Arbeit zu verrichten, d.h. Δ G = 0! Der Standardzustand liegt vor, wenn von allen beteiligten Stoffen in der Reaktionsmischung jeweils 1 Mol vorliegt. Wir sprechen dann von Δ G 0. Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

17 Chemische Verfahrenstechnik chemische Thermodynamik Für das chemische Gleichgewicht gilt: ΔG = 0 Die Formulierung mit Hilfe der Aktivitäten a ist für reale Stoffe notwendig. Für ideale Gase (bei niedrigen Drücken) gilt: KaKa a i = x i Aktivität = Molanteil ΔG 0 = - RT * ln K x Damit gilt: K x ~ K a Die Freie Enthalpie im Standardzustand kann somit aus der Gleichgewichtskonstanten berechnet werden. Für viele technische Anwendungen besteht umgekehrt das Ziel, mit Hilfe der Gleichgewichtskonstanten die Zusammensetzung des Reaktionsgemisches im Gleichgewicht zu berechnen. (19) (20) Industrielle Prozesse müssen fern vom Gleichgewichtszustand arbeiten, denn ΔG = 0 bedeutet Reaktionsstillstand. Im Durchflussreaktor wie dem Hochofen läuft keine Reaktion mehr ab, ähnliches gilt auch für kontinuierlich betriebene Syntheseprozesse. Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

18 Chemische Verfahrenstechnik Stöchiometrie 3.Aussage über die Richtung des Ablaufs chemischer Reaktionen Die molare Gibbs´sche Reaktionsenthalpie entspricht der maximalen Arbeit je Mol Formelumsatz, die durch die Reaktion im Reaktionsverlauf verrichtet werden kann. Temperatur und Druck sind konstant. Teil der Energie, die unter Standardbedingungen bei der Reaktion nicht in Arbeit umgesetzt werden kann. Energie, die die Reaktion insgesamt liefern kann. Energie, die bei der Reaktion maximal in Arbeit umgesetzt werden kann. (21) (22) Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

19 Bei gleichbleibender Temperatur und gleichbleibendem Druck, kann eine Reaktion nur spontan ablaufen, wenn ΔG kleiner als Null ist: Die freie Enthalpie sagt folgendes über Reaktionen aus: - ΔG < 0 : Die Reaktion läuft spontan ab - ΔG = 0 : Die Reaktion befindet sich im Gleichgewicht (keine Reaktion); Beschreibung durch Massenwirkungsgesetz - ΔG > 0 : Die Reaktion kann nur erzwungen werden (z.B. durch Zufuhr von Arbeit) Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

20 exergonische Reaktion (ΔG < 0) ΔH 0 Reaktion verläuft freiwillig. ΔH > 0 und ΔS 0 > 0 endotherme Reaktion mit zunehmender Entropie verläuft nur bei hohen Temperaturen freiwillig ab. Fallunterscheidung ΔH < T * ΔS 0 ΔH < 0 und ΔS 0 < 0 exotherme Reaktion mit abnehmender Entropie verläuft nur unterhalb einer Grenztemperaturen freiwillig ab. H 2 O + C CO + H 2 ΔH > T * ΔS 0 2 H 2 + O2 2 H 2 O Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

21 endergonische Reaktion (ΔG > 0) ΔH > 0 und ΔS 0 < 0 Reaktion verläuft nie freiwillig. ΔH > 0 und ΔS 0 > 0 endotherme Reaktion mit zunehmender Entropie verläuft bei geringen Temperaturen nicht freiwillig ab. Fallunterscheidung ΔH < T * ΔS 0 ΔH < 0 und ΔS 0 < 0 exotherme Reaktion mit abnehmender Entropie verläuft bei hohen Temperaturen nicht freiwillig ab. H 2 O + C CO + H 2 ΔH > T * ΔS 0 2 H 2 + O2 2 H 2 O Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik

22 Aufgabe: Ob eine Reaktion freiwillig abläuft, kann mit Hilfe der folgenden Gleichung errechnet werden: Für eine Reaktion ist: ΔH R = 100 kJ/mol ΔS o R = 200 J/mol K Ab welcher Temperatur läuft die Reaktion freiwillig ab? Prof. Dr. rer. nat. K.-E. Köppke SS 2014 Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik


Herunterladen ppt "Chemische Verfahrenstechnik chemische Thermodynamik FH DüsseldorfMaschinenbau und Verfahrenstechnik Chemische Verfahrenstechnik Teil 3 Chemische Thermodynamik."

Ähnliche Präsentationen


Google-Anzeigen