Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Zn(s) + 2 HCl(aq) > ZnCl2(aq) + H2(g)

Ähnliche Präsentationen


Präsentation zum Thema: "Zn(s) + 2 HCl(aq) > ZnCl2(aq) + H2(g)"—  Präsentation transkript:

1

2

3 Zn(s) + 2 HCl(aq) -------> ZnCl2(aq) + H2(g)

4

5

6 CaCO3(s) + 2 HCl(aq) ----> CaCl2(aq) + H2O(l) + CO2(g)
Volumen-Zeit-Diagramm 2.3 mL/min. 12.6 mL/min. CaCO3(s) + 2 HCl(aq) ----> CaCl2(aq) + H2O(l) + CO2(g) 80.3 mL/min.

7 CaCO3(s) + 2 HCl(aq) ----> CaCl2(aq) + H2O(l) + CO2(g)
Stoffmenge-Zeit-Diagramm 0.09 mmol/min. 0.51 mmol/min. CaCO3(s) + 2 HCl(aq) ----> CaCl2(aq) + H2O(l) + CO2(g) 3.28 mmol/min.

8 (homogenes Startgemisch) Heterogene Reaktion
Homogene Reaktion (homogenes Startgemisch) Heterogene Reaktion (heterogenes Startgemisch) Je höher die Konzentration desto höher Rg: C↑ => Rg ↑ Wenn Gase beteiligt sind: Je höher der Teildruck P desto höher Rg: P↑ => Rg ↑ Je höher die Temperatur desto höher Rg: T↑ => Rg ↑ RGT-Regel: Erhöhung der Temperatur um 10K verdoppelt die Rg. Zerteilungsgrad Oberfläche ↑ => Rg ↑ Rührgeschwindigkeit ↑=> Rg ↑ Ersatz von, an Edukte verarmte, Rektionslösung durch Reaktionslösung höherer Eduktkonzentration. Zugabe eines Katalysators => Rg ↑

9 Rühren beschleunigt den Abtransport
Reaktionslösung Rühren beschleunigt den Abtransport von Produktmolekülen nahe der Oberfläche des Feststoffpartikels in die Reaktionslösung, ebenso wie die Nachlieferung von Eduktmolekülen aus der Reaktionslösung an die Oberfläche des Feststoffpartikels. Reaktionslösung in der Nähe des Feststoffpartikels

10 CaCO3(s) + 2 HCl(aq) ----> CaCl2(aq) + H2O(l) + CO2(g)
Einfluss von a: Konzentration und b: Zerteilungsgrad.

11 Prämisse 1: Notwendige Voraussetzung für chemische Reaktionen ist der Zusammenstoss von Teilchen.
Prämisse 2: Nur Zusammenstösse zwischen Teilchen mit genügend hoher Energie führen zur Produktbildung.

12 1 4 6 a A + b B -----> c C + d D 8 16 Fazit: => Kollisionen
Einfluss der Konzentration und des Teildruckes: 1 4 Je höher die Konzentration (der Teildruck) der Teilchen ist, desto mehr Zusammenstösse erfolgen pro Zeiteinheit. 6 Fazit: a A + b B -----> c C + d D => 8 16

13 Einfluss der Temperatur:
Eine chemische Reaktion geht mit einer Umgruppierung der Atome einher und damit verbunden sind unmittelbar der Bindungsbruch und die Bindungsneuknüpfung. Am Anfang der Reaktion überwiegt der Bindungsbruch, während die Bindungsneuknüpfung noch nicht weit vorangeschritten ist. Die potenzielle Energie der reagierenden Teilchen ist somit gegenüber der der freien Teilchen höher. Nur Eduktteilchen die beim Zusammenstoss diese Mindestenergie mitbringen, können sich In Produktmoleküle umwandeln

14 # Einfluss der Temperatur: N2O + NO N2 + NO2 -139 KJ/mol
Reaktionskoordinate Übergangszustand Üz + DRH°= -139 KJ/mol REAKTIONSENTHALPIE ENERGIE DRH°= -139 KJ/mol N2O + NO N2 + NO2 Ea-Hin. = 209 KJ/mol AKTIVIERUNGSENERGIE

15 Distribution of molecular kinetic energies

16 a A + b B -----> c C + d D # Fazit: => Einfluss der Temperatur:
Reaktionskoordinate Übergangszustand Üz + DRH°= -139 KJ/mol REAKTIONSENTHALPIE ENERGIE DRH°= -139 KJ/mol N2O + NO N2 + NO2 Ea-Hin. = 209 KJ/mol AKTIVIERUNGSENERGIE Fazit: a A + b B -----> c C + d D => Abhängig von EA und der Temperatur

17 # DRH = EA-Hin. - EA-Rück. N2O + NO N2 + NO2 -139 KJ/mol DRH°=
Reaktionskoordinate Übergangszustand Üz N2O + NO N2 + NO2 + DRH°= -139 KJ/mol REAKTIONSENTHALPIE ENERGIE AKTIVIERUNGSENERGIE Rückreaktion Ea-Rück. = 348 KJ/mol Ea-Hin. = 209 KJ/mol AKTIVIERUNGSENERGIE DRH = EA-Hin. - EA-Rück.

18 # N2O + NO N2 + NO2 DRH DRH = EA-Hin. - EA-Rück. EA-Hin. EA-Rück.
Ea-Hin. = 209 KJ/mol AKTIVIERUNGSENERGIE + DRH°= -139 KJ/mol REAKTIONSENTHALPIE ENERGIE AKTIVIERUNGSENERGIE Rückreaktion Ea-Rück. = 348 KJ/mol # Reaktionskoordinate Übergangszustand Üz EA-Hin. N2O + NO N2 + NO2 DRH EA-Rück. Bezieht sich immer auf die Hinreaktion! DRH = EA-Hin. - EA-Rück.

19 Eine Analogie Pr. Ed. [Üz] # Pr. Energie [Üz] # Ed. EA-Rück. EA-Hin.
DRH Pr. Energie [Üz] # Ed. EA-Rück. Pr. EA-Hin. DRH Ed. Reaktionskoordinate

20 Für die Bildung von HI aus den Elementarstoffen findet man DRH = -13 KJ/mol und EA-Hin. = 183 KJ/mol. H2 + I2 ---> 2 HI Zeichnen Sie das Energiediagramm für die Reaktion b) Machen Sie einen Vorschlag, über die mögliche Struktur des Übergangszustandes. c) Ist die Reaktion exo- oder endotherm? d) Berechnen Sie EA-Rück. e) Berechnen Sie DRH für den Zerfall von HI in die Elementarstoffe.

21 # Energie kJ/mol H2 + I2 2 HI 2 HI H2 + I2 EA-Hin. DRH -13 kJ/mol
EA-Hin = 183 kJ/mol EA-Rück = 196 kJ/mol H2 + I HI EA-Hin. EA-Rück. DRH -13 kJ/mol EA-Hin = 196 kJ/mol EA-Rück = 183 kJ/mol 13 kJ/mol 2 HI H2 + I2 EA-Hin. EA-Rück. DRH 13 kJ/mol + Reaktionskoordinate

22 # Energie kJ/mol 2 HI H2 + I2 EA-Hin. DRH 13 kJ/mol EA-Rück.
EA-Rück = 183 kJ/mol EA-Hin = 196 kJ/mol + 13 kJ/mol Reaktionskoordinate

23 # Energie kJ/mol NO + Cl2 NOCl + Cl NOCl + Cl NO + Cl2 + DRH 80 kJ/mol
EA-Hin= 85 kJ/mol EA-Rück= 5 kJ/mol + NOCl + Cl NO + Cl2 EA-Hin. EA-Rück. DRH -80 kJ/mol EA-Rück= 85 kJ/mol EA-Hin= 5 kJ/mol NO + Cl NOCl + Cl EA-Hin. EA-Rück. DRH 80 kJ/mol + Reaktionskoordinate

24 A + B C + D DRH = EA-Hin. - EA-Rück. EA-Hin. DRH EA-Rück.
Bezieht sich immer auf die Hinreaktion! (EDUKTE) (PRODUKTE) DRH = EA-Hin. - EA-Rück. Exotherme Reaktion: DRH < 0 Edukte haben einen höheren Energie- inhalt als die Produkte. Das Reaktionsgemisch erwärmt sich, die Reaktion wird immer schneller, wenn nicht gekühlt wird. Endotherme Reaktion: DRH > 0 Produkte haben einen höheren Energie- inhalt als die Edukte. Das Reaktionsgemisch kühlt sich ab. Die Reaktion wird immer langsamer, wenn nicht geheizt wird.

25 Hin- (Bildung) und Rückreaktion (Zerfall)
erfolgen gleichzeitig! Bildung von HI: Zerfall von HI: Gesamtreaktionsgeschwindigkeit:

26 [HI] [H2] & [I2] GLEICHGEWICHT Bildung = Zerfall Bildung von HI
Zerfall von HI

27 Massenwirkungsgesetz MWG
[H2] & [I2] [HI] Bildung von HI Zerfall von HI Bildung = Zerfall GLEICHGEWICHT Gesamtreaktionsgeschwindigkeit: Im Gleichgewicht VReaktion = 0 KC: Gleichgewichtskonstante Ist nur von der Temperatur Abhängig. Massenwirkungsgesetz MWG

28 Röhrenmodell

29 vHinreaktion = vRückreaktion
Röhrenmodell CProdukt im Gleichgewicht CEdukt im Gleichgewicht Geschwindigkeitsmodell vHinreaktion im Gleichgewicht ist vHinreaktion = vRückreaktion vRückreaktion

30 Quelle: Riedel; Anorganische Chemie 8te Auflage deGruyter 2012

31 General Chemistry: Chapter 15
Chemistry 140 Fall 2002 Heterogene Gleichgewichte CaCO3(s) CaO(s) + CO2(g) Kc = [CO2] KP = PCO2(RT) Copyright © 2011 Pearson Canada Inc. General Chemistry: Chapter 15

32 K Katalysierte Reaktion Ed. [Ed-K]# Pr. Ed. + K + K Ed. Pr.
KATALYSEZYKLUS K Ed. [Ed-K]# Pr. ENERGIEPROFIL Energie [Üz] # Ed. + K [ÜZ]# + K Ed. Pr. Reaktionskoordinate

33 Katalysierte Reaktion
[Üz] # DRH EA-Hin. [Üz] # Pr. Ed.

34 K Katalysierte Reaktion mit Bildung eines Zwischenproduktes. Ed.
KATALYSEZYKLUS K Ed. [Ed-K]# Zp. [P-K]# Pr. ENERGIEPROFIL Energie [Üz]# Ed. + K [Üz1]# [Üz2 ]# Zp. + K Ed. Pr. Reaktionskoordinate

35 Reaktionslösung vor der Katalysatorzugabe (schematische Teilchendarstellung)
Edukt 1 Edukt 2 Wasser

36 Reaktionslösung nach der Katalysatorzugabe (schematische Teilchendarstellung)
Edukt 1 Edukt 2 Wasser Katalysator-Molekül

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 Katalyse-Zyklus (Katalysator+Edukte) Edukte Katalysator
(Katalysator+Zwischenprodukte) (Katalysator+Produkte) Produkte

56 Ea-Hin. Ea-Rück. A + B DRH C + D Reaktionskoordinate ENERGIE #
AKTIVIERUNGSENERGIE Ea-Hin. A + B DRH REAKTIONSENTHALPIE ENERGIE # Reaktionskoordinate AKTIVIERUNGSENERGIE Rückreaktion Ea-Rück. C + D (EDUKTE) (PRODUKTE)


Herunterladen ppt "Zn(s) + 2 HCl(aq) > ZnCl2(aq) + H2(g)"

Ähnliche Präsentationen


Google-Anzeigen