Zellkern Zytoskeleton

Slides:



Advertisements
Ähnliche Präsentationen
DNA Allgemeine Informationen zur DNA Aufbau der DNA
Advertisements

Genetik eqiooki.de.
Bakterien und Viren Bau und Vermehrung.
1. Die Zelle Zelle (v. lat.: cella, cellula = Keller, kleiner Raum)
Vorlesung Biologie für Mediziner (Bölker FB17)
Molekulare Grundlagen der Vererbung
Zentrales Dogma DNA-Replikation DNA Transkription Reverse
Biologie Zelltheorie – Cytologie – Transport durch die Membran – verschiedene Arten von Zellen.
Proteinbiosynthese.
Humangenetik.
Die Struktur der Erbsubstanz Die Kodierung der Erbinformation
DIE „PLASTEN“: ORGANELLEN MIT ZWEI
VIREN - I nm Nucleoprotein Partikeln
Die DNA-Replikation erfolgt bi-direktional
Zur Erinnerung... - Membranen bestehen aus unterschiedlichen Lipiden:
Der Zellkern.
Mitochondrien Allgemeines Aufbau & Struktur Bild zum Aufbau
Membran- & Vesikelformen
Betreuer: Christian Fleck
Vorlesung Zellbiologie Teil Biologie:
Vorlesung Zellbiologie Teil Biologie:
Zytologie 1. Dr. Attila Magyar
Zytologie 3-4. Dr. Attila Magyar
Das elektronenmikroskopische Bild der Zelle
Transport durch Membranen
…viel Spaß beim anschauen !
Aufbau einer menschlichen Zelle
Ribonukleinsäure - RNA
Vesikulärer Transport
Die biologische Membran Zellorganellen der exo- und endocytotischen Wege Orsolya Kántor Institut für Anatomie, Histologie und Embryologie Semmelweis.
Zellkontakte Basalmembran
Dr. Orsolya Kántor Institut für Anatomie, Histolgie und Embryologie
Tutorium Physiologie Thema Muskulatur.
Tiermedizinische Histologie I. Semester, Allgemeine Histologie
Dallinger Georg, 8.A BRG Schloss Wagrain
DNA als Erbsubstanz DNA (Desoxyribonukleinsäure)
Muskeln und Bewegung.
Translation und Transkription
Mitose - Zellteilung Zellteilung dient dem Wachstum
6.5 Eiweiße = Proteine.
Biochemie Vorlesung SS 2014
Meiose – Reifeteilung oder Reduktionsteilung
Die identische Reduplikation
Das Mitochondrium Größenverhältnisse Vorkommen Funktion Aufbau.
1.4 Membrantransport.
Zentrales Dogma der Molekularbiologie:
Ordne die folgenden Begriffe nach der Größe! Beginne mit dem Kleinsten! Moleküle Zellmembrandicke Bakterien Viren Zellen Zellorganellen.
Examen Zellen Themen: Vokabeln Zellentheorie Kennzeichen des Lebens
Immunologie - Grundlagen
Joelle, Paul & Philipp RNA- Prozessierung.
Einführung in Biologie
Zeitplan 2008 Teil Renkawitz-Pohl
Dosiskompensation Drosophila melanogaster
Zytoskelett: Mikrotubuli, Mikrofilamente, Intermediärfilamente
Oberflächenepithelien und Drüsengewebe
Die Zelle.
II. Mikrofilamente und Intermediärfilamente
I. Mikrotubuli und MT-assoziierte Zellorganellen
I. Mikrotubuli und MT-assoziierte Zellorganellen
Zellteilung, Mitose, Meiose
Zellteilung und Zellzyklus. Metaphase-Chromosomen.
Muskelgewebe Dr. Arnold Szabó Semmelweis Universität
Neurone: Axon, Dendrit, Synapse
Molekulare Zellbiologie
Molekulare Zellbiologie
Axonaler Transport Ladung Mitochondrien Rezeptor Miro Adaptor Milton
Myosin und Aktin Melina Hötger.
Transmembran strukturen
Transkriptionsfaktoren
Histone –Funktion und Modifikation
 Präsentation transkript:

Zellkern Zytoskeleton Dr. Orsolya Kántor Institut für Anatomie, Histolgie und Embryologie Semmelweis Universität Budapest 2011 September

Zellkern (Nukleus) Eukaryotische „Erfindung” Enthält die DNS (~2m/Zellkern, meistens diploider DNS Gehalt) an Histonen gebunden (=Chromatin), in Chromosomen gegliedert (46, XY) Form, Größe: variabel, oft typisch Anzahl: meistens eins kernlos: rote Blutkörperchen mehrkernig: z. B. Osteoklast Heterochromatin Euchromatin Nukleolus (↑) Barr-Körperchen: Inaktiviertes X-Chromosom (eingekreist)

Phasenkontrastmikroskopisches Bild Zellkern- EM Euchromatin Heterochromatin Nucleolus Kernhülle Leberzelle Bestandteile: Kernmembran, mit Poren Kernlamina Nukleoplasma (Grundsubstanz) Kernmatrix Chromatin → Chromosomen Nukleolus Kernmatrix, Nukleoplasma: Wasser, Ione, solubile kleine Moleküle, besondere RNS Auch Makromolekulare Komplexe: Enzyme, Umbau, Regulation Phasenkontrastmikroskopisches Bild

Funktionelle Aspekte Zellkern enthält die Erbsubstanz (DNS) Zentrales Dogma der Molekularbiologie: DNS RNS Protein Replikation Transkription Zellkern enthält die Erbsubstanz (DNS) → bei Zellteilung weitergegeben (Replikation, semikonservativ) → das genetische Programm wird umgesetzt (Transkription, Translation) → Zellkern ist die Kommandozentrale der Zelle Zwangsläufig mit Transportvorgängen verbunden

Kernhülle, Kernlamina Äußere Membran → rER, mit Ribosomen besetzt innere Membran → mit Kernlamina, Chromatin (3) verbunden Perinukleärer Spalt → rER Lumen Mit Kernporen (2,↑) Kernlamina: 30-100 nm dick Mechanische Stütze der Kernhülle Aus intermediär Filamenten (Lamine) Zieht sich auch über die Kernporen (↑) Zellteilung: Lamin wird phosphoryliert → Kernlamina zerfällt in Bruchstücke

Kernporen Zellkern, freeze-fracture 30-50 nm im EM, eigentlicher Kanal: 9 nm (ein großer, 8 kleinere, periphäre Kanäle) Transportschleusen: kleine Moleküle: nicht sehr selektiv Makromoleküle: Kernlokalisationssignal (NLS) Porenkomplex: Oktagonal An beiden Seiten mit Fibrillen verbunden (→innen: Kernkorb) Säulenkomponente mit 8 Speichen +Außen- + Innenring

Transport durch die Kernporen (Kern)proteine müssen in den Zellkern hinein: Enzyme der Transkription, Replikation Transkriptionsfaktore (Regelung der Transkr.) Proteine für RNS Prozessierung Proteine für DNS Konsensation Bestimmte Hormonrezeptore (z. B. für Steroidhormone) Ribosomale Proteine Kernexportrezeptore Kernlokalisationssequenz, Kernimportrezeptore, Energie (GTP) Substanzen müssen aus dem Kern heraus: Kernimportrezeptore RNS: mRNS, tRNS Ribosomale Untereinheiten Kernexportsignal, Kernexportrezeptore, Energie Über ein gewisses Molekulargewicht ist der Kerntransport nicht möglich → verschiedene Zusammensetzung von Kern und Zytoplasma

DNS Kondensierung - Chromatin ~3,2 x 109 Basenpaar, 2 m/Zelle→zerbrechlich→ist zu Proteinen assoziiert Chromatin= DNS+Proteine (Histone, non-Histone) Nukleosom (~146 Bp DNS, 1,65x Windungen +2xHistone 2A, 2B, 3, 4), dazwischen Linker DNS (~wenige-80 Bp mit Histon 1) Chromatinfaden (Solenoid), H1-Histon zieht die Nukleosomen zusammen, Faden wickelt sich um Proteine der Nukleoplasma herum Schleifenbildung, Verbindung zu Scaffold Proteinen Weitere Verfaltung, Verdrillung 22x2 somatische Chromosomen + Sexchromosomen (X oder Y)= 46 Chromosomen Enthalten mehrere Gene Gesamtergebnis: 1/10 000 seiner ursprünglicher Länge Histone: viele positive Ladungen (Lysin, Arginin)→ binden sich fest an negativ geladene Zucker-Phosphat Gerüst, Histone können kovalent modifiziert werden→ Regulation der Genexpression

Interphasechromosom Dichte Regionen: Heterochromatin (90%) -Konstitutives Heterochromatin (z. B. perinukleäres Heterochromatin, meistens nicht-kodierende Sequenzen: Telomer, Satellita DNS, Zentromer) -Fakultatives Heterochromatin: kodierende Sequenzen, die gerade nicht transkribiert werden (ruhig gestellte Gene) Lockere Regionen: Euchromatin (~10%, wird gerade transkribiert, aktive Gene) →RNS Synthese Sind an einigen Stellen an Kernmembran oder an Fibrillen der nukleären Matrix geankert → Chromosomen besitzen ein Territorium innerhalb des Zellkerns

Chromosom 46, 23 homologe Paare Metaphasechromosom Anaphasechromosom 46, 23 homologe Paare 44 Autosomen, 2 Sex-Chromosomen (Gonosomen) Chromatiden Chromomer: Bandmuster (CG bzw. TA-reiche Regionen) Centromer verbindet die Chromatiden Ansatzstelle der Kinetochoren- Mikrotubuli bei Zellteilung Telomere: Endabschnitte Repetitive, nicht kodierende Sequenzen Shützt die terminale, kodierende DNS-Bereiche Menschlicher Karyogram Telomerase: Enzym, verlängert die Telomere

Nukleolus LM Ribosomenfabrik ~1 μm, meistens 1-2/Zelle (max. 10) Verschwindet vor Zellteilung Enthält Kopien der ribosomale Gene (Chr. 13, 14, 15, 21, 22) → •Nukleolus Organisator Region (NOR, in Form von fibrillären Lakunen) Pars fibrosa: rRNS Prozessierung Pars granulosa: fertige ribosomale Untereinheiten EM

Zytoskeleton

Aufbau, Funktionen Polymere aus Baueinheiten Mechanische Stütze → Bestimmung von Zellform, Polarität Verankerung von Zellorganellen Bewegung von Zellorganellen (intrazelluläre Bewegungen, auch während der Zellteilung) Bewegung der Zelle Dynamisches Netzwerk von Proteinen im Zytoplasma

Zytoskelett EM Bild 1. Mikrotubuli (25 nm Ø) polymerisiert aus globulären Proteinen, schneller Auf- und Abbau (dynamische Instabilität), assoziierte Motorproteine, konservative Proteine 1. Mikrotubuli (25 nm Ø) 2. Mikrofilamente (6-8 nm Ø) 3. Intermediäre Filamente (10 nm Ø) fibrilläre Proteine, widerstandsfähiges und festes Skelett, keine dynamische Instabilität, neu in der Evolution grün: Mikrotubuli, rot: Aktin-Mikrofilamente blau: Zellkern Mikrofilament-Bündel Mikrotubuli Intermediär-filament EM Bild

Intermediärfilamente (IF) ~10 nm dick Zugfest → mechanische Festigung (z. B. Epithelzellen der Haut, Neurone, Muskelzellen) umringen oft den Zellkern, strahlen in die Peripherie aus → sind oft an Zell-Zell-Verbindungen verankert (z. B. Desmosom) Auch im Zellkern: Lamin (Kernhülle) Gruppen: Keratin (Epithel) Vimentin und Verwandte Vimentin: Bindegewebszellen Desmin: Muskelzellen GFAP: Gliazellen Neurofilamente (NF-L, -M, -H) (Kern)Lamine Hilfsproteine: Plectin (grün), Filaggrin: hilft bei Quervernetzung, Verankerung an Desmosomen Grün: Keratin Mikrotubulus IF

Mikrotubuli (MT) Polarität! Aufbau: aus Tubulin Heterodimeren Lange, steife Röhren, äu. Durchm.: 25 nm →Schienensystem, intrazell. Transport von Organellen Bildung komplexer Aggregaten: Zentriol, Basalkörper, Teilungsspindel, Zilien, Flagellen Polarisiert: + (β) Ende (α) Ende Entspringen aus dem Zentrosom (MTOC) Tubulin Dimer→Protofilament→13 Protofilamente=Mikrotubulus Grün: MT Gelb: MTOC

Dynamische Instabilität der Mikrotubuli Mikrotubuli sind in ständigem Auf- und Abbau →schnelle Umformung Tubulin Dimere können GTP binden→ feste Bindung zwischen den Dimeren → Mikrotubulus wächst, am + Ende: „GTP-Kappe” Wenn der Einbau von GTP-bindende Tubulin Dimere langsamer läuft, als die spontane GTP-Hydrolyse: Am + Ende sind Dimere, die GDP binden → weniger feste Bindung → Dimere dissoziieren vom Mikrotubulus → Mikrotubulus schrumpft

Organisation der Mikrotubuli - Zentrosom Zentriolen: EM Querschnitt Längsschnitt Zentrosom= Zentriolenpaar + amorphe Proteinmasse (MTOC) MTOC: Enthält u. a. γ-Tubulin: Ausgangspunkt für ein Mikrotubulus → bestimmt gleichzeitig die Polarität 0,3-0,6 μm lange Zylinder, Durchm.: 0,2 μm 2 kurze Röhrchen aus Mikrotubulus-Tripletts (9x3), die rechtwinklig zueinander stehen 13 Protofilamente, einige gemeinsam Rolle bei Zellteilung, Entstehung von Basalkörpern bei Kinozilien Können aus postmitotischen Zellen (z. B. Neurone) fehlen

Zentrosom mit Mikrotubuli

Mikrotubulus assoziierte Proteine (MAP) Capping Proteine: MT stabilisierend Motorproteine: intrazelluläre Bewegung Kopf: ATP-ase, bindet an MT (Energie aus ATP-Spaltung wird in kinetische Energie verwandelt) Schwanz: bindet an Zellorganellum (Fracht), organellumspezifisch Kinesine: wandern Ri. + Ende Dyneine: wandern Ri. – Ende

Transport von synaptischen Vesikeln entlang Mikrotubuli Bidirektional Anterograder (ortograder) Transport: Kinesin Retrograder Transport: Dynein

Mikrofilamente (Aktin) 5% des Proteingehalts 7 nm, verdrillt, kürzer, biegsamer als MT Aus Monomeren: G (glob.) → F (filamentär) Polarität: + Ende – schnelleres - Ende – langsameres Dynamische Instabilität Bündeln, Netzwerke Wachstum Abbau Aufbau Rot: Aktin

Rolle von Aktinfilamenten Rot: Aktin Zellkortex: mechanische Stütze für die Plasmamembran (Membrangerüst) Zellverbindungen: Rolle beim Aufbau von Zonulae adherentes, Punktdesmosomen, Fokalkontakte Kontraktiler Ring → Zellteilung Bildung von Lamellipodien, Filopodien → Amöboide Bewegung Gerüst für Mikrovilli, Stereozilium Mit anderen Proteine: kleine, kontraktile Bündel

Aktin assoziierte Proteine Thymosin, Profilin: Regulation der Polymerisierung Capping Proteine: schützen vor Abbau Tropomyosin: stabilisierend Fimbrin, Villin: Bündelung Spektrin, Filamin: Netzwerkbildung Vinculin, Aktinin, Talin: Befestigung zur Zellmembran Myosin: Motorprotein

Myosin(e) Myosinfamilien: Jede Zelle Aktinabhängiges Motorprotein Bindet und hydrolysiert ATP Muskulatur Kopf: Bindungsstelle für ATP und Aktin Hals Schwanz: Bindung zu anderen Zellkomponenten (andere Myosinmoleküle, Vesikeln) Kopf Schwanz

Quellen: Plattner, Hentschel: Zellbiologie, Thieme, 2011 Alberts: Lehrbuch der molekularen Zellbiologie, Wiley VCH, 2005 Welsh: Lehrbuch Histologie, 2010 Darvas: Sejtbiológia Folien von Prof. Pál Röhlich