Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie I Handlungsregeln, die aus der nichtlinearen Theorie der (1 + 1) - ES folgen.

Slides:



Advertisements
Ähnliche Präsentationen
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“
Advertisements

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen
PowerPoint-Folien zur 2. Vorlesung „Bionik I“
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2012.
Übung 6.1Turing-Maschine 1.Machen Sie sich mit der Funktionsweise des Busy Beaver-Programms vertraut Vollziehen sie die 11 Schritte der ersten Turing-Tabelle.
WS Algorithmentheorie 08 – Dynamische Programmierung (2) Matrixkettenprodukt Prof. Dr. Th. Ottmann.
Genetische Algorithmen
Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung Evolutionsstrategie I Fortschrittstheorie der (1, ) – Evolutionsstrategie am Kugelmodell.
PowerPoint-Folien zur 8. Vorlesung „Bionik II / Biosensorik“
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 2. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie II“
6. Vorlesung Evolutionsstrategie I
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie I Vier elementare Optimierungsstrategien auf dem Prüfstand.
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel in der Minimalform { {
Treibstoff für den Optimierungsmotor Evolutionsstrategie.
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5-Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie II Die goldene Regel der Evolution, das größte kleine Sechseck und das Maximum-Minimum-Distanz-Problem.
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie I Auf dem Weg zu einer nichtlinearen Theorie Korridormodell, Kugelmodell und die.
Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung Evolutionsstrategie II Anwendungsfelder geschachtelter Evolutionsstrategien - Programmierung einer geschachtelten.
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung Biosensorik / Bionik II Organisches Rechnen (Organic Computing) Struktur und Arbeitsweise neuronaler.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung Evolutionsstrategie I Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie II Das Wunder der sexuellen Fortpflanzung - Theorie der rekombinativen ES.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Evolutionsstrategie II Praktikum SS10 Anmeldung mit Name und Matrikelnummer an: Termin des Praktikums wird nach Absprache mit.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 2. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Der ES-Fortschritt im Quadrikgebirge und Kalkül der geschachtelten Evolutionsstrategien.
Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Auf dem Weg zu einer ES-Algebra - Kalkül der geschachtelten Evolutionsstrategien.
Anwendungen evolutionärer Algorithmen
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.
Christian Mansky Design - Fallstudien Christian Mansky
Hallo Ich möchte einen Text einer Folie nicht einfach nur einfliegen lassen, sondern genau diesen Text, der schon an einer bestimmten Stelle steht, vergrößern.
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie I“ Auf dem Weg zu einer nichtlinearen Theorie Korridormodell, Kugelmodell und die.
Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“ Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung „Evolutionsstrategie II“ Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“ Anwendungsfelder geschachtelter Evolutionsstrategien - Programmierung einer.
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
6. Thema: Arbeiten mit Feldern
Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung „Evolutionsstrategie I“ Finale Theorie der Evolutionsstrategie mit   Eltern und Nachkommen.
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“ Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1,  ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“ Nichtlineare Theorie der (1,  ) - Evolutionsstrategie Fortschritt und Erfolg.
Ingo Rechenberg PowerPoint-Folien zur 11. Vorlesung „Evolutionsstrategie I“ Sternstunden der Theorie der Evolutionsstrategie Vortrag in Jena anlässlich.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
PowerPoint-Folien zur 6. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“
 Präsentation transkript:

Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie I Handlungsregeln, die aus der nichtlinearen Theorie der (1 + 1) - ES folgen

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel { vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5

Normalverteilte Zufallszahlen z i für die Mutation der Variablen x i zizi w 0 2 +

P P Die Trefferwahrscheinlichkeitsdichte Ursprung der z -Koordinaten P P P P P P P

P P Zum radialen Strecken- Erwartungswert P P 3

… Für n Dimensionen für n >> 1 Zur Schwankung des Zufallsvektors

Korridor Kugel Ergebnisse der nichtlinearen Theorie

Korridor Kugel Ergebnisse der nichtlinearen Theorie

Suchbild der ES für n >> 1 sondern wegen Nicht so so

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel { vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5 ? Wie stark müssen wir vergrößern bzw. verkleinern?

Zum Schrittweitenänderungsfaktor der (1 + 1) - ES für g = 1 Klettern mit max Für n >> 1 gilt

Die Schrittweiten müssen sich so ändern wie die Radien: Für k = 1 folgt Für optimales Fortschreiten ist also nach n Generationen um zu verkleinern. Bewährt hat sich = 1,3 – 1,5. Einstellregel

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel { 1,5 für W e > 1 / 5 1,5 für W e < 1 / 5 Nach jeweils n Generationen

Computer-Versuche mit der 1/5-Erfolgsregel

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel { 1,5 für W e > 1 / 5 1,5 für W e < 1 / 5 Nach jeweils n Generationen

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel { { Minimalform !

Idealisierter richtiger Ablauf einer (1+ 1)-ES-Optimierung Schrittweitenänderung Erfolg Misserfolg Erfolg Erfolgshäufigkeit ist richtig Keine Schrittweitenänderung !

Ein Minimalprogramm in M ATLAB zur Minimierung der Testfunktion Kugelmodell v=100; d=1; xe=ones(v,1); qe=sum(xe.^2); for g=1:1000 xn=xe+d*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qe qe=qn; xe=xn; d=d*1.3; else d=d/(1.3^0.25); end semilogy(g,qe,'b.') hold on; drawnow; end

Zurück zu den Fortschrittsformeln für das Korridor- und das Kugelmodell

Kugelmodell

Quasikonstante für opt Korridormodell

Fortschrittsfenster der (1 + 1) - Evolutionsstrategie Evolutionsfenster

Ende