A pnCCD detector system for high speed optical applications

Slides:



Advertisements
Ähnliche Präsentationen
Peter Marwedel TU Dortmund, Informatik 12
Advertisements

Holger Flemming, GSI, EE DVEE-Palaver, th Workshop on Electronics for LHC and Future Experiments , Heidelberg.
Forschungszentrum Jülich In der Helmholtz-Gemeinschaft Rolf Stassen IKP/ COSY Darmstadt 1 Status report HESR 1: RF Cavity.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Front end low Temperature
NARVAL Meeting 12./13. January 2012
4th Symposium on Lidar Atmospheric Applications
DOAS-Gruppe: Institut für Umweltphysik Universität Bremen Promotionsvortrag, 28. April 2006,
+ Arbeitsbericht mit Blick in die Zukunft M. Pernicka
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Weitere Kooperationspartner: ACIDA GmbH Centa Antriebe Kirschey GmbH EickHoff Maschinenfabrik GmbH ITI Gesellschaft für ingenieurtechnische Informationsverarbeitung.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
J. Neymeyer, T. Wülfing, W. Abdul-Wahab Al-Ansari, A. Apostolidis, S
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
OEM reader manufacturer since 1993
Institut für Angewandte Mikroelektronik und Datentechnik Selected Topics in VLSI Design (Module 24513) Vincent Wiese Adder Structures on FPGA and ASIC.
Institut für Angewandte Mikroelektronik und Datentechnik Course and contest Results of Phase 4 Nils Büscher Selected Topics in VLSI Design (Module 24513)
SiPass standalone.
Institut für Angewandte Mikroelektronik und Datentechnik Course and Contest Results of Phase 5 Eike Schweißguth Selected Topics in VLSI Design (Module.
Institut für Angewandte Mikroelektronik und Datentechnik Results of Phase 4: Layout for ST65 technology by Christoph Niemann Selected Topics.
Realisation of a Substitution Method to Perform High Precision Density Measurements of Seawater Hannes Schmidt Henning Wolf Egon Hassel.
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
Robotermechanik Trippelmechanismus Schussmechanismus Antriebsmotoren
III II I Relations between masses and mixing angles.
UFZ UMWELTFORSCHUNGSZENTRUM LEIPZIG-HALLE GmbH October 2004 in Leipzig, Germany at the UFZ Centre for Environmental Research 11 th Magdeburg Seminar.
Pierre Auger Observatory. Pierre Auger( ) Was a nuclear physics and cosmic ray physics. Made cosmic ray experiments on the Jungfraujoch Discovery.
Venturi Rohr 1 2 Gemessen: p1, p2, D, d Rohr horizontal T=20o
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
Licht sind kleine Teilchen
Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/041 Jens Zimmermann Max-Planck-Institut für Physik, München MPI.
Nuklearmedizinsche Klinik und Poliklinik Klinikum rechts der Isar Technische Universität München Image reconstruction, MR-based attenuation correction,
Technische Universität München Forschungs-Neutronenquelle Garching, ZWE FRM-II Neutron Radioscopy of a compressor type refrigerator Johannes Brunner, Marton.
6 Prepositions with ACCUSATIVE
Olaf Hartmann NPC Austrian Research Promotion Agency FFG EUREKA in Austria Österreichische Forschungsförderungsgesellschaft | Sensengasse 1 | 1090 Wien.
I U T Institut für Umwelttechnologien GmbH 1.
Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H., Albert-Einstein-Straße 15, Berlin frontend control at BESSY R. Fleischhauer.
Rheinisch-Westfälisches Institut für Wirtschaftsforschung Rüdiger Budde Analysis with Remi Policy Insight in Nordrhein Westfalen – Including.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Astrid Bracher, M. Weber, K. Bramstedt,M. Coldewey-Egbers, L. N. Lamsal, John.
Outline Collaborators HgTe as a 3D topological insulator Sample design
Prof. Dr. W.-P. Buchwald Fachhochschule Braunschweig/Wolfenbüttel University of Applied Sciences Images Original Quantized 2-dimensional sampled Sampled.
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Patterns and Solitons in nonlinear optical resonators Physikalisch-Technische Bundesanstalt Braunschweig/Germany V.B. Taranenko, K. Staliunas, G. Slekys.
Daniel Britzger, MPI für PhysikSoftware-Implementierung des DEPFET Vertex Detectors für ILC Simulation des DEPFET Vertex Detectors Daniel Britzger MPI.
Mitglied der Helmholtz-Gemeinschaft Questions to HESR 6 th March 2012 PANDA-meetingDieter Prasuhn.
Technische Universität München In-situ Synchrotron and Neutron Diffraction studies on phase transformation in Austempered Ductile Iron (ADI) Xiaohu Li.
DPG Frühjahrstagung „Teilchenphysik“ Heidelberg, Photon identification in double beta-decay experiments using segmented germanium detectors.
Mitglied der Helmholtz-Gemeinschaft PANDA LV. Collaboration Meeting - Wien FEM Simulation – strip barrel staves D. Grunwald, V. Fracassi, E.
Electronics for Pedestrians – Tutorial II/II –
High-beta Experiment on
Du bist am dicksten und am dümmsten.
Electronics: Overview
Cryo-Test LESER Test Bench
Process and Impact of Re-Inspection in NRW
Watermark image processing without a ruler
CERN – TUD – GSI Webmeeting
Results from CO2 heat pump applications
Ferrite Material Modeling (1) : Kicker principle
Institut für Experimentelle
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
CSL211 Computer Architecture
Zeitlich veränderliche Ströme
Calorimetry as an efficiency factor for biogas plants?
Ich - Projekt Due Monday, September 19..
Die Messung der Zunahme der Meeresspiegels
 Präsentation transkript:

A pnCCD detector system for high speed optical applications Semiconductor Detector Workshop 2005 Taormina / June 19 – 24, 2005 A pnCCD detector system for high speed optical applications Robert Hartmann 1 , Hubert Gorke 2 , Norbert Meidinger 3 , Heike Soltau 1 and Lothar Strüder 3 PNSensor GmbH, Römerstraße 28, 80803 München, Germany Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany

Overview • Principles of pnCCD Optical properties • Detector format and geometry • Readout and data acquisition • Measurements and Performance Summary and outlook

Principles of the pnCCD Fully depleted 3-phase CCD Back side illuminated Cooled to -40º C .. -80º C (typ.) Small detector capacitance ≈ 25 fF → low noise One integrated FET per channel Channel-Parallel-CCD → fast readout p-implanted registers High radiation hardness

Overview • Principles of pnCCD Optical properties • Detector format and geometry • Readout and data acquisition • Measurements and Performance Summary and outlook

pnCCD for optical applications back illuminated detector unstructured entrance window results in a homogeneous responsitivity application of an ultra-thin rectifying implant leads to a high QE in the blue and UV region easy to apply an anti-reflective coating entire detector volume of 450µm is radiation sensitive high quantum efficiency in the red and NIR region fringing effects are negligible small detector capacitance high signal to noise ratio • highest electric field at readiation entrance side narrow PSF back illuminated detector unstructured entrance window results in a homogeneous responsitivity application of an ultra-thin rectifying implant leads to a high QE in the blue and UV region easy to apply an anti-reflective coating entire detector volume of 450µm is radiation sensitive high quantum efficiency in the red and NIR region fringing effects are negligible small detector capacitance high signal to noise ratio • highest electric field at readiation entrance side narrow PSF

Measured and modelled reflectivity of CCD entrance window : Measured data : Model of Si-SiOx-SiO2 : Model of pure Si-SiO2 Interface

Internal quantum efficiency

Measurement of optical response at room temperature Optimized for CsI(Ti) scintillator readout (λ = 548nm) Standard entrance window, consisting of a thin SiO2 layer Reflectivity of Silicon resp. Si/SiO2 ≈ 30% Use layer stack of SiO2/Si3N4 as ARC Technology allows to taylor responsitivity over a wide wavelength range Technological compatible ARC: High QE in visible, maximum at 580nm Optimum QE in NIR region Blue and UV optimized (50% @ 300nm)

150 mm Wafer of recent fabrication

Fringing effects due to multiple light reflection between detector front and back side

Overview • Principles of pnCCD Optical properties • Detector format and geometry • Readout and data acquisition • Measurements and Performance Summary and outlook

Schematic layout of 51 mm CCD with double-side readout

51mm pnCCD with a double-sided readout, mounted onto a ceramic substrate image area = 13.0×13.5 mm2 chip area = 16.0×31.0 mm2 51 mm pixel size 256×264 pixel plus 2×4 “light insensitive” columns readout transfer to both sides

Performance overview Fast transfer time 25 μs/image (split to both detector sides) CTI ≈ 1 · 10-5 → total charge loss < 0.15 % Charge handling capacity > 105 e¯ / pixel Fill factor 100 % Readout time Normal mode: 15 μs/row, i.e. 500fps Fast mode: 6.5 μs/row, i.e. 1000fps Pixel rate 70 Mpixel/s , split on 8 readout nodes Readout noise Normal mode → < 500fps : 1.8 e¯ (rms) Fast mode → 1000fps : 2.3 e¯ (rms) Transfer binning (×2, ×3, ×4) 2000, 3000, 4000fps : 2.3 e¯ (rms) Operating temperature - 55º C for all measurements above Dynamic output range 70 dB

Brief overview • Principles of pnCCD Optical properties • Detector format and geometry • Readout and data acquisition • Measurements and Performance Summary and outlook

CAMEX Amplification- and Readout-Chip Multi-correlated double-sampling filtering (MCDS) Signal processing of all channels in parallel (132) Serialized readout parallel to analogues signalprocessing Selectable gains and operating modes Electronic noise contribution less than 1 e- Readout-speed per node up to 10MHz (i.e. 6.6µs per line on two readout nodes)

Data acquisition and real-time correction 1000 frames / sec. 264 lines / frame 264 pixel / line 70 Mpixel / sec. !!! 140 MB/sec. Split on 4 DAQ boards á 17.5 Mpixel / sec. 2×14 bit flash-ADC Pipelined data processing in fast FPGA processor for real-time data correction and reduction Output of 1st CCD line is available with a latency time < 40 ms constructing frame MIP and cluster analysis latency ~ 1.2 msec Example for a SH detector:

30 in total, free-to-ground, PC controlable, incl. monitor Overview Camera Controller cPCI-Bus 19’’ crate double height Power-Supplies 30 in total, free-to-ground, PC controlable, incl. monitor Fiber Interface ADC-Modul 1 ADC-Modul 2 ADC-Modul 3 ADC-Modul 4 Sequencer PS-Control 32 2 2 2 2 80 MB/s 300m Front-End-Boards (incl. clock-drivers) CAMEX pnCCD-Chip Linux PC

Data acquisition electronic system Sequenzer 1 … 4 ADC-Boards á 2 ADCs Spare for Voltage Controller Optical Interface

Overview • Principles of pnCCD Optical properties • Detector format and geometry • Readout and data acquisition • Measurements and Performance Summary and outlook

Spectroscopic soft X-ray performance of pnCCD Operating Temperature = -55° C Overall noise contribution : 2.3 e- All events reconstructed FWHM for singles: 45eV

Low and uniform noise performance 66×264 pixel, ⅛ of 51mm CCD (“worst” section) 1 of 4 output nodes on one readout side image plus storage area operating temperature = -55°C “1000fps” - timing scheme Mean noise = 2.3 electrons (rms) 98.8% of all pixel exhibit less than 2.7 e- noise 100% are below 3.1 e-

Increase readout speed for dedicated applications Repetively readout of n lines with signal merely transfer with no readout lines w/o signal readout of next n lines and so on … 40×40 SH with 5×5 Pixel: 1kHz → 1.3kHz frame rate .

Conclusion pnCCDs exhibit a high quantum efficiency from the optical to NIR region device with 256×264 (13.0x13.5mm2) image size and a double side readout was successfully tested for a frame rate of 1000 fps total readout noise of 2.3e- (RMS) was achieved in this mode at an operating temperature of -55ºC binning in transfer direction allows 2kHz, 3kHz, ... frame rates with same noise figures due to very low leakage current low and homogeneous noise performance over entire area (no bright or hot pixel, even at higher temperatures) optical photon counting possible down to ≈ 8 γ/pixel

Back to the beginning Long term stability of pnCCD detector aboard XMM-Newton (1999): Total area = 36cm2 all 12 Sub-CCDs are still operating same operating parameters (T = -90°C) quantum efficiency unchanged noise performance unchanged slight radiation damage as expected: CTI ← 6 cm → FWHM after 5 years in orbit: Al-K (1.5 keV): 110 eV → 111 eV Mn-Kα (5.9 keV): 155 eV → 160 eV