Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.

Ähnliche Präsentationen


Präsentation zum Thema: "The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1."—  Präsentation transkript:

1 The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1 WSL-Institute for Snow- und Avalanche Research SLF, Davos, CH 2 Alfred-Wegener-Institute for Polar and Marine Research, Germany Microsnow Reading, 6. – 8. August 2014

2 Outline 1.Motivation 2.Instrument and measurements 3.Simulations and Results –Spatial variability –Layer thickness 4.Conclusions WSL-Institut für Schnee- und Lawinenforschung SLF2

3 1.Motivation 1.Motivation I Microwave observations are essential in polar regions (think about polar night!) To understand the microwave signatures of polar firn, in-situ data is necessary, but traditional snow measurements are: –limited in spatial resolution –limited by extensive measurement times –constrained due to harsh polar environments –subjective (variability between observers) Desirable: fast derivation of the relevant objective parameters with sufficient resolution (e.g. Correlation length and density to model microwave emission) WSL-Institut für Schnee- und Lawinenforschung SLF3

4 1.Motivation 1.Motivation II Where to measure (Sampling design)? Answer requires knowledge about snow variability! Pic: Martin Schneebeli 4WSL-Institut für Schnee- und Lawinenforschung SLF

5 2.1Instrument: SnowMicroPen (SMP)  Specifications:  High resolution: vertical ~1mm  Fast: 1 m profile ~ 1 minute –Portable => Ideal for spatial variability  Output: –Density, SSA and Correlation length (Proksch et al, submitted) –2D stratigraphy from transects 5

6 2.1Instrument: SnowMicroPen (SMP) 6 Density: Correlation length:

7 2.2Measurements at Kohnen Station: Density WSL-Institut für Schnee- und Lawinenforschung SLF7 92 SMP profiles with interval 0.5 m -> 45m transect:

8 2.2Measurements at Kohnen Station: Density WSL-Institut für Schnee- und Lawinenforschung SLF8 92 SMP profiles with interval 0.5 m -> 45m transect:

9 2.2Measurements at Kohnen Station: Correlation length l ex WSL-Institut für Schnee- und Lawinenforschung SLF9 92 SMP profiles with interval 0.5 m -> 45m transect:

10 2.2Measurements at Kohnen Station: specific surface area SSA WSL-Institut für Schnee- und Lawinenforschung SLF10 92 SMP profiles with interval 0.5 m -> 45m transect:

11 3.1MEMLS simulations WSL-Institut für Schnee- und Lawinenforschung SLF11 MEMLS: Microwave Emission Model of Layered Snowpacks, Wiesmann and Mätzler, 1999. -> with Improved Born Approximation, Mätzler 1998. MEMLS input: 1cm layer thickness in top most meter l ex : SMP (no «grain size» scaling) Density: SMP Snow temperature profile T sky : 0K Snow-ground reflectivity: 0 20m deep profile, linearly increasing

12 3.2Results: Brightness temperatures WSL-Institut für Schnee- und Lawinenforschung SLF12 σ T b TbTb

13 3.2Results: Brightness temperatures WSL-Institut für Schnee- und Lawinenforschung SLF13 σ T b TbTb

14 3.2Results: Brightness temperatures WSL-Institut für Schnee- und Lawinenforschung SLF14  One MEMLS run per SMP profile, total N = 92  σ(T b, 36GHz ) = 16.6 K WSL-Institut für Schnee- und Lawinenforschung SLF14 σ T b TbTb

15 3.2Results: Brightness temperatures  One MEMLS run per SMP profile, total N = 92  σ(T b, 36GHz ) = 16.6 K To decrease σ, we have to increase the number of measurements N: σ(T b ) = 16 K for N=92 σ(T b ) = 8 K for N = 368 σ(Tb) = 2 K for N = 2944 WSL-Institut für Schnee- und Lawinenforschung SLF15 σ T b TbTb

16 3.2Results: Kohnen 16 Standard deviations: T 19GHz, V-pol = 7.1 K T 36GHz, V-pol = 16.6 K T 89GHz, V-pol = 17.2 K Constant Density:Constant corr. length T 19GHz, V-pol = 7.5 K T 19GHz, V-pol = 2.5 K T 36GHz, V-pol = 17.9 KT 36GHz, V-pol = 6.6 K T 89GHz, V-pol = 18.9 KT 89GHz, V-pol = 9.1 K

17 3.2Results: Summit 17 Standard deviations: T 19GHz, V-pol = 13.9 K T 36GHz, V-pol = 24.1 K T 89GHz, V-pol = 23.5 K Constant Density:Constant corr. length T 19GHz, V-pol = 13.5 K T 19GHz, V-pol = 3.7 K T 36GHz, V-pol = 26.1 KT 36GHz, V-pol = 3.8 K T 89GHz, V-pol = 27.8 KT 89GHz, V-pol = 7.0 K

18 3.2Results: Point Barnola WSL-Institut für Schnee- und Lawinenforschung SLF18 Standard deviations: T 19GHz, V-pol = 3.3 K T 36GHz, V-pol = 11.0 K T 89GHz, V-pol = 21.2 K Constant Density:Constant corr. length T 19GHz, V-pol = 4.5 K T 19GHz, V-pol = 1.2 K T 36GHz, V-pol = 12.8 KT 36GHz, V-pol = 1.5 K T 89GHz, V-pol = 23.7 KT 89GHz, V-pol = 4.3 K

19 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF19

20 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF20

21 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF21

22 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF22

23 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF23

24 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF24

25 3.3Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF25

26 3.4Results: Layer thickness WSL-Institut für Schnee- und Lawinenforschung SLF26 20m deep profile: –First meter SMP measurement –2 – 20 meter: linear increasing, with random noise added. 3 cm 20 cm

27 3.4Results: Effect of vertical averaging WSL-Institut für Schnee- und Lawinenforschung SLF27 Averaging to 3cm layer thickness leads to significant loss of density variations!

28 4.Summary and Conclusions WSL-Institut für Schnee- und Lawinenforschung SLF28  One single profile is not enough – statistically based sampling design?  Layer thickness critical The SnowMicroPen allows the measurement of full-meter profiles in less than one minute Transects reveals the 2D quantitative stratigraphy of polar firn o Outlook: optimize deep profiles to match Satellite data

29 s WSL-Institut für Schnee- und Lawinenforschung SLF29 Thank you! Thanks to: Christian Mätzler Ludovic Brucker

30 WSL-Institut für Schnee- und Lawinenforschung SLF30

31 WSL-Institut für Schnee- und Lawinenforschung SLF31

32 3.5Results: Measurement accuracy WSL-Institut für Schnee- und Lawinenforschung SLF32 Meas. accuracy in top most meter To model Tb within 1K

33 Outlook Compare to SSMI WSL Institute for Snow and Avalanche Research SLF33

34 To do: Spat var - for other stations Layer thickness Meas accuracy WSL Institute for Snow and Avalanche Research SLF34

35 WSL Institute for Snow and Avalanche Research SLF35

36 3.2Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF36

37 3.2Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF37

38 3.2Results: Spatial correlations WSL-Institut für Schnee- und Lawinenforschung SLF38


Herunterladen ppt "The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1."

Ähnliche Präsentationen


Google-Anzeigen