Zahlensysteme und Dualarithmetik copyleft: munz

Slides:



Advertisements
Ähnliche Präsentationen
Wesen und „Unwesen“ der binären, dezimalen und hexadezimalen Zahlen
Advertisements

oder der Weg zum „Platzsparen“
3. Operatoren und Ausdrücke
2.3 Kodierung von Zeichen 2.4 Kodierung von Zahlen
Das duale Zahlensystem
X =. Allgemeine Form der Gleichung (Addition): Allgemeine FormLösungshinweis x + a = b a + x = b x = b - a Allgemeine Form der Gleichung (Subtraktion):
Speicherung und Interpretation von Information
Analoge vs. Digitale Informationen
Imperative Programmierung
Geschichte der Mathematik
Gymnasium Horn – Bad Meinberg
Zahlensysteme und Dualarithmetik copyleft: munz
Das Wurzelzeichen √ und seine Bedeutung
Zahlenmengen.
Bruchrechenregeln Los geht´s Klick auf mich! Melanie Gräbner.
Rechnen im Binärsystem
Sprachprobleme ?.
Umwandlungen Hexadezimal in Dezimal Dezimal in Hexadezimal
Dualzahlen und ihre logischen Verknüpfungen
Rechnen im Binärsystem
Rechnen in verschiedenen Systemen
Vortrag Gerhard Fobe - Index
Potenzgesetze.
4 6 5 Rechenoperationen hoch 2 ??? hoch 2 ??? hoch 2
Grundlagen der Informatik
Herzlich Willkommen.
Grundlagen der Kommunikation in Verbindung mit der Codierung von Daten
Eine Darstellung mit Bits
Axiome von Peano 1. 1 ist eine natürliche Zahl
Umrechnung zwischen verschiedenen Zahlensystemen
Schaltnetze und Schaltwerke Marcel Waldvogel
Vertauschungs-, Verbindungs-, Verteilungsgesetz
Binärsystem Was ist es?
Technische Informatik II Übung 1: Konvertieren von Zahlen
Umrechnung von Zahlensystemen
Schriftliche Addition
Division mit Rest Fortbildungsveranstaltung am 5. Juni 2009 Innsbruck
Rechnungsarten Die Addition
Vertiefungsstoff zum Thema „Darstellung von Zahlen“
LAP IT-Techniker und IT-Informatiker
Übung zu Grundlagen der Technischen Informatik
X. Übungsblatt – Aufgabe X a)Beschreiben Sie den allgemeinen Aufbau einer Zahl N in einem polyadischen Zahlensystem. Übung zu Grundlagen der Technischen.
Übung zu Grundlagen der Technischen Informatik
Bitte acht Bit für ein Byte oder warum funktioniert der Computer Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013
Addition und Subtraktion von Brüchen für die Jahrgangsstufe 6 Bearbeite jede Aufgabe schriftlich im Heft oder auf einem Blatt. Prüfe immer zuerst, ob du.
Rechnungen kontrollieren mit Excel. Auf der Startseite mit den Kacheln findest du das Programm Excel. Öffne es.
{ Das Binärsystem 0,1 }.  Als Binärsystem wird das System bezeichnet,welches nur aus 0-en und 1-en besteht. Dieses System wurde geschaffen, damit Nerds.
ETI-Praktikum: Mikroprogrammierung Vorzeichenlose 32-Bit-Division Gruppe 27: Jakob Klein Arne Wirtz Gerrit Blöss SS 2006.
Mit Dezimalzahlen dividieren
oder: wie Computer die Welt sehen
mаtheguru.one Tipps und Lösungen zu Matheaufgaben aus Schulbüchern
Zahlensysteme Zahlensysteme
Präsentation Binär.
Grundlagen der Informationsverarbeitung
Polynomdivision Michi Hofstätter.
► Zahlen kleiner 0 heissen negative Zahlen.
Gerade und ungerade Zahlen
Farben in RGB Grundfarben sind R (rot), G (grün), B (blau).
Zahlendarstellung, Zahlenkonversion und ARithmetik
Grundlagen und Grundbegriffe
Das duale Zahlensystem
Hexadezimale Darstellung von Zahlen
Wie die Farbe in den Computer kam!
Grundlagen der Betriebssysteme [CS2100]
LernBar LU 16: Zehn hoch.
Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht!
Schriftliche Multiplikation
Datentyp- umwandlung.
Das Wurzelzeichen √ und seine Bedeutung
Rechenausdrücke (Terme) – Fachbegriffe - Rechenregeln
 Präsentation transkript:

Zahlensysteme und Dualarithmetik copyleft: munz (Binärsystem) Dualsystem Oktalsystem Dezimalsystem (Sedezimalsystem) Hexadezimalsystem Dualarithmetik: Addition Subtraktion Multiplikation Division Ende

Dualsystem (Binärsystem) Basis: 2 Zeichenvorrat: {0;1} Umwandlung von Dezimalsystem in das Dualsystem mit Restdivision (Modulo-Operation) beliebige Zahl dividiert durch 2 ergibt als Rest entweder 0 oder 1 Notwendig für Dualarithmetik Copyleft: munz

Umwandlung Dezimal- in Dualsystem : 2 = 84 Rest 0 84 : 2 = 42 Rest 0 42 : 2 = 21 Rest 0 21 : 2 = 10 Rest 1 10 : 2 = 5 Rest 0 5 : 2 = 2 Rest 1 2 : 2 = 1 Rest 0 1 : 2 = 0 Rest 1 Schreibweise der Ergebnisse in umgekehrter Reihenfolge: 16810 = 101010002 Schnelle Umrechnungen mit dem Windowstaschenrechner in wissenschaftlicher Ansicht: Copyleft: munz Mehrere Wege zur Berechnung möglich

Umwandlung Dual- in Dezimalsystem 101010002 = 1*27+0*26+1*25+0*24+1*23+0*22+0*21+0*20 = 128+0+32+0+8+0+0+0 = 16810 Copyleft: munz

Oktalsystem Basis 8 Zeichenvorrat {0;1;2;3;4;5;6;7} Erleichtert den Umgang mit Dualzahlen Aus 3-Bit-Worten können acht verschiedene Kombinationen dargestellt werden Copyleft: munz

Umwandlung Dual- in Oktalsystem binär 000 001 010 011 100 101 110 111 oktal 1 2 3 4 5 6 7 dezi. Zerteilen der Dualzeichenfolge in 3er-Gruppen von rechts beginnend Umschreiben der Dualzahl in eine Oktalzahl 300910 = 1011110000012 = 57018  binär  101  111  000  001  oktal 5  7 1 Copyleft: munz

Umwandlung Oktal- in Dezimalsystem Zur Umwandlung von Oktal- in Dezimalzahlen einfach die Oktalzahl mit ihrem Stellenwert potenzieren und die Ergebnisse addieren: 5 7 0 1 (8) 1 * 80 = 1 0 * 81 = 0 7 * 82 = 448 5 * 83 = 2560 3009 (10) Copyleft: munz

Umwandlung Dezimal- in Oktalsystem Zur Umwandlung von Dezimal- in Oktalzahlen muss die Dezimalzahl mit Hilfe der Modulo-Operation umgewandelt werden und von der höchsten oktalen Stelle aus gelesen werden: 3009 : 8 = 376 Rest 1 376 : 8 = 47 Rest 0 47 : 8 = 5 Rest 7 5 : 8 = 0 Rest 5 5 7 0 1 (8) Copyleft: munz

Dezimalsystem Basis: 10 Zeichenvorrat: {0;1;2;3;4;5;6;7;8;9} Ziffern besitzen Nenn- und Stellenwert Nennwert: wirklicher Wert der Ziffer Stellenwert: Wert der Ziffer innerhalb der dargestellten Zahl Beispiel: 4186 = 4*1000+1*100+8*10+6*1 = 4*103 +1*102+8*101+6*100 Copyleft: munz

Hexadezimalsystem (Sedezimalsystem) Basis: 16 Zeichenvorrat: {0;1;2;3;4;5;6;7;8;9;A;B;C;D;E;F} In der Praxis können mit wenig Zeichen große Zahlen dargestellt werden Anwendung bei Programmiersprachen, Farbangaben bei Grafikprogrammen zweithäufigst genutztes Zahlensystem (n. DEZ) Verminderte Fehleranfälligkeit Wird auf maschinennaher Umgebung häufig in Assemblersprachen genutzt Copyleft: munz

Hexadezimalsystem - Zeichenvorrat 1 2 3 4 5 6 7 BIN 0000 0001 0010 0011 0100 0101 0110 0111 HEX DEZ 8 9 10 11 12 13 14 15 BIN 1000 1001 1010 1011 1100 1101 1110 1111 HEX A B C D E F Copyleft: munz

Umwandlung Hexadezimal- in Dezimalsystem Die Stellenwerte des Hexadezimalsystems sind Potenzen zur Basis 16. B C 1 (16) 1 * 160 = 1 12 * 161 = 192 11 * 162 = 2816 3009 (10) Copyleft: munz

Umwandlung Dezimal- in Hexadezimalsystem Zur Umwandlung von Dezimal- in Hexadezimalzahlen muss die Reste von unten nach oben angeschrieben werden 3009 : 16 = 188 Rest 1 188 : 16 = 11 Rest 12 11 : 16 = 0 Rest 11 B C 1 (16) Copyleft: munz

Dualarithmetik - Addition stellenweises Rechnen von geringst-wertigen zur höchstwertigsten Stelle, also von rechts nach links Stellenübertrag analog zum Rechnen im Dezimalsystem Zusätzliche Regeln unbedingt beachten: 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 Übertrag 1 Copyleft: munz

Addition - Rechnung Beispiel: 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 Übertrag 1 Beispiel: Addition dezimal Addition dual 168 + 37 205 1 0 1 0 1 0 0 0 + 0 0 1 0 0 1 0 1 1 1 1 1 1 1 Copyleft: munz

Dualarithmetik - Subtraktion stellenweises Rechnen von geringst-wertigen zur höchstwertigsten Stelle, also von rechts nach links Stellenübertrag analog zum Rechnen im Dezimalsystem Zusätzliche Regeln unbedingt beachten: 0 - 0 = 0 0 - 1 = 1 Übertrag 1 1 - 0 = 1 1 - 1 = 0 Copyleft: munz

Subtraktion - Rechnung 0 - 0 = 0 0 - 1 = 1 Übertrag 1 1 - 0 = 1 1 - 1 = 0 Beispiel: Subtraktion dezimal Subtraktion dual 168 - 37 131 1 0 1 0 1 0 0 0 - 0 0 1 0 0 1 0 1 1 0-1=1 Übertrag 1 0-0=0 --> 0-1=1 Übertag 1 0-1=1 Übertrag 1 --> 1-1=0 ÜBERTRAG MITNEHMEN 1-0=1 --> 1-1=0 0-0=0 1-1=0 1-0=1 1 1 1 1 1 Berechnung auch über Komplementbildung möglich Copyleft: munz

Dualarithmetik - Multiplikation Vorgehensweise simultan zur schriftlichen Multiplikation im Dezimalsystem Kein Stellenübertrag Ergebnisse aus Teilmultiplikationen werden zu Summe addiert (Dualaddition) Zusätzliche Regeln unbedingt beachten: 0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1 Copyleft: munz

Multiplikation - Rechnung 1 * 0 = 0 0 * 0 = 0 0 * 1 = 0 1 * 1 = 1 Beispiel: Multiplikation dezimal Multiplikation dual 1 1 0 0 * 1 1 1 0 1 2 * 4 8 6 1 1 1 1 1 1 1 1 1 1 1 1 Copyleft: munz

Dualarithmetik - Division Komplexeste Arithmetik Rechnung wird an höchster Stelle des Dividenden begonnen Prüfen ob Divisor vollständig abgezogen werden kann (mittels Dualsubtraktion) Ja: Notierung einer 1 im Ergebnis und mit Rest weiterrechnen. Nein: Notierung einer 0 im Ergebnis, eine Stelle nach rechts rücken und nochmals prüfen Copyleft: munz

Division - Rechnung Beispiel: Division dezimal Division dual 1 6 8 / = - Division - Rechnung 1 Beispiel: 1 - Division dezimal Division dual 1 1 1 6 8 / = 2 4 10101000 / 110 = 1 1 1 1 - 110 geht nicht 10 - 110 geht nicht 101 - 110 geht nicht 1010 - 110 geht (Rest 100) 1001 - 110 geht (Rest 11) 110 - 110 geht (Rest 0) 0 - 110 geht nicht Copyleft: munz

Division - Rechnung Beispiel übersichtlicher: 1 / = - Copyleft: munz