Infrastructure Analysis of a dedicated hydrogen pipeline grid

Slides:



Advertisements
Ähnliche Präsentationen
Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik, Universität Rostock Spezielle Anwendungen.
Advertisements

Abkürzungen mit Präpositionen German Prepositional Contractions
Integration of renewable energies: competition between storage, the power grid and flexible demand Thomas Hamacher.
Internationale Promovierende Promovieren an der Humboldt-Universität zu Berlin Dr. Uta Hoffmann Humboldt-Universität zu.
Lehrstuhl für Energiewirtschaft und Anwendungstechnik Prof. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher Integration of renewable energies: competition.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Rising energy.
Garmisch-Partenkirchen Garmisch-Partenkirchen is a mountain resort town in Bavaria, southern Germany. Nearby is Germany's highest mountain, Zugspitze,
Energy Supply Michelle, Philipp, Gregor. Table of Contents 1.energy industry 2.political view to the energy turnaround in Hamburg 3.Hamburg as "European.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
As of 1st July 2011 there will be no more "Wehrdienst" in Germany. It still has its place in the German constitution (Grundgesetz) but young men are no.
EUROPÄISCHER FONDS FÜR REGIONALE ENTWICKLUNG MANAGING AUTHORITY EUROPEAN REGIONAL DEVELOPMENT FUND BADEN-WÜRTTEMBERG Designing good programmes.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Competition.
Zips, March 2008 Germany‘s views on investment in China German FDI to China, 9th biggest foreign investor in 2005 Almost 2000 German companies in China.
Bank aus Verantwortung Nepal’s Initiatives for promotion of Solar PV.
Institut für Angewandte Mikroelektronik und Datentechnik Course and contest Results of Phase 4 Nils Büscher Selected Topics in VLSI Design (Module 24513)
Abkürzung: RE = Renewable Energy
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Rising energy.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
How does the Summer Party of the LMU work? - Organizations and Networks -
Production of electricity in Finland By Germany-Group.
KLIMA SUCHT SCHUTZ EINE KAMPAGNE GEFÖRDERT VOM BUNDESUMWELTMINISTERIUM Co2 online.
A NEW COURSE FOR BETTER TIMES An Investment Plan for Europe: Rebuilding after the Crisis Irish Congress of Trade Unions, 11 April 2014 Reiner Hoffmann.
I U T Institut für Umwelttechnologien GmbH 1.
Institut für Wirtschaftspolitik und Wirtschaftsforschung Universität Karlsruhe (TH) The System Dynamics Approach: Results of Scenarios for Europe Claus.
COST working group 2 – EMM Erreichbarkeitsatlas
EUROPÄISCHE GEMEINSCHAFT Europäischer Sozialfonds EUROPÄISCHE GEMEINSCHAFT Europäischer Fonds für Regionale Entwicklung Workpackage 5 – guidelines Tasks.
Stahl-Zentrum Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl 1 | © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl Welcome to Düsseldorf.
Fakultät für Gesundheitswissenschaften Gesundheitsökonomie und Gesundheitsmanagement Universität Bielefeld WP 3.1 and WP 4.1: Macrocost.
Memorisation techniques
Erlassjahr.de – Entwicklung braucht Entschuldung, Carl-Mosterts-Platz 1, Düsseldorf The Case of Grenada Buenos-Aires March 19th 2014.
EUROPÄISCHE GEMEINSCHAFT Europäischer Sozialfonds EUROPÄISCHE GEMEINSCHAFT Europäischer Fonds für Regionale Entwicklung Workpackage 5 – guidelines Tasks.
Institut für Betriebswirtschaftslehre Globalisierung und Multinationale Unternehmen Teil I: Die Globalisierung als Herausforderung für Weltwirtschaft,
Biomass partnerships. 2 technical, economical, environmental aspects April 1st, 2016 Bild-Quelle [8]
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
On the case of German has 4 cases NOMINATIVE ACCUSATIVE GENITIVE DATIVE.
Report on StratMos WP C-4d New Intermodal Solutions Combining Containers and Ro/Ro Cargo Stefan Breitenbach, Port of Hamburg Marketing.
Standort assurance for companies Industrie- und Handelskammer Lippe zu Detmold 01. Juni 2010 Seite 1 What does the IHK do against the crisis?
Mitglied der Helmholtz-Gemeinschaft IEK-3: Elektrochemische Verfahrenstechnik Wasserstoff als Energieträger der Energiewende Eine Systemanalyse Sebastian.
Germersheim ei Erstmals erwähnt 1090 erhielt Germersheim am 18. August 1276 durch König Rudolf von Habsburg die Stadtrechte verliehen. First mentioned.
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie The Bavarian energy concept/ The Bavarian energy agency ENERGIE INNOVATIV.
Strukturen 3B.2 LEKTION 3B 3B.2-1© 2014 by Vista Higher Learning, Inc. All rights reserved. Time expressions Startblock German has two main concepts related.
Intelligent Solutions The Energie Steiermark is Austria’s 4 th -largest energy company, focused on providing its customers with electricity,
BPE- Veröffentlich zur Solarenergie1 Result in Energy –Production 2008 – ,5 kWp.
The economic potential of the global Heavy Rare Earth Element deposits in comparison to the high-class Chinese deposits Joint Meeting GV and.
Globalisierung und Multinationale Unternehmen Teil I: Die Globalisierung als Herausforderung für Weltwirtschaft, multinationale Unternehmen und verantwortliches.
Institute of Electrochemical Process Engineering (IEK-3)
Warm-ups, speaking credits, and journal topics
Wind-Hydrogen-Energy Storages
Process and Impact of Re-Inspection in NRW
Get your Project started
CERN – TUD – GSI Webmeeting
Renewable energies in the capital region Berlin-Brandenburg Berlin-Brandenburg – Czech cooperation forum on renewable energies David Wortmann, 16th.
Fully functioning international medical graduates are not free of charge How do international medical graduates integrate into German rehabilitative clinics?
Results from CO2 heat pump applications
Collaborative Webmeeting November 24th, 2010 Geneve / Darmstadt
Austria Recent Media Mentions The 2017 Report’s Policy Recommendations
ELECTR IC CARS Karim Aly University of Applied Sciences.
WEB Windenergie AG The Austrian Pionier in Energy Transition.
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
Nordgröön – Sustainable integration of renewable energy
Calorimetry as an efficiency factor for biogas plants?
Niedersächsisches Ministerium
Scenario Framework for the Gas Network Development Plan
 Präsentation transkript:

Infrastructure Analysis of a dedicated hydrogen pipeline grid Martin Robinius, Peter Markewitz Thomas Grube, Detlef Stolten m.robinius@fz-juelich.de Beiratssitzung h2-netzwerk-ruhr e.V. Anwenderzentrum Herten, Doncaster Platz 5-7, 45699 Herten Institute of Electrochemical Process Engineering (IEK-3)

The overall GHG emission goals of Germany require a holistic transformation of all sectors Goals of the BRD in reference to 1990 [2] GHG Emissions in Germany since 1990 [1] COP21 Paris [3] Others Residential Industry and commerce Power Sector Mobility 0% >2050 GHG emission reduction per sector 1990 to 2013 [1] The mobility sector lags behind in comparison to the achieved emission reductions of the other sectors. Others Industry/ commerce Resi- dential Power Sector Mobility [1] BMWi, Zahlen und Fakten Energiedaten - Nationale und Internationale Entwicklung. 2016, Bundesministerium für Wirtschaft und Energie: Berlin. [2] BRD, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, Bundeskabinett. 2010: Berlin. [3] UN, Paris Agreement - COP21, United Nations Framework Convention on Climate Change 2015: Paris.

Assessment based on municipal level and an hourly resolution of grid load and RES feed-in The Year 2050 – Energy Concept 2.0 Power-Sector RES power [GW | TWh]: onshore: 170 | 350; offshore: 59 | 231; PV: 55 | 47; hydro: 6 | 21; bio: 7 | 44 Further assumptions: grid electricity: 528 TWh; imports: 28 TWh; exports: 45 TWh; pos. residual: natural gas „Copper plate“ & 40 GWh pumped hydro: 191 TWh (→ 4.0 million tH2) Grid capacity constraints considered: 293 TWh (→ 6.2 million tH2) RES: Renewable Energy Sources Residual load = Load ∑ RES (Example PV only) - Conventional Power Plants Electrical Grid 380 and 220 kV Neg. RL (Surplus) Positive residual load All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1

Linking the Power and Transport Sector Negative residual energy (Surplus) Residual energy [MWh/km²] Positive residual energy

Energy Concept 2.0 Assessment based on county level H2 Demand/a FCV [kg/100 km]: 0.92 (2010) → 0.58 (2050) [1], linear decrease FCV fleet: curve fit; until 2033 according to [2]; maximum share in 2050: 75 % of German fleet Further assumptions: 14,000 km annual mileage 12 years lifetime; total vehicle stock: 44 million cars Peak annual H2 demand: 2.93 million tH2 (2052) (Surplus 2050 Copper plate scenario  4.0 million tH2) Peak-Year 2052 Hydrogen Demand [103 t/a] High Hydrogen Demand FCV [Million] Hydrogen Demand [Million t] S-Curve based on: Target is 75 % of total passenger cars are FCV  32.9 million FCV in 2050 Reference points are based on H2Mobility # based on: Number of cars Population density Useable income of private households … All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff and Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Straßenverkehr, to be published except: [1] GermanHy (2009), Scenario “Moderat” [2] H2-Mobility, time scale shifted 2 years into the future [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff.

Energy Concept 2.0 Assessment based on county level Results H2 sources: 28 GW electrolysis power in 15 districts in Northern Germany, 15 billion € H2 sinks: 9,968 refueling stations with averaged sales of 803 kg/d, 20 billion € H2 storage: 48 TWh (incl. 60 day reserve), 8 billion € Pipeline invest [3]: 6.7 billion € (12,104 km transmission grid); 12 billion € (29,671 km distribution grid) Electricity cost: LCOE Onshore: 5.8 ct/kWh; Total H2 cost (pre-tax): 17.5 ct/kWh WACC: 8 % Neg. RL (Surplus) Electrolyzer Node Electrical line Countie with surplus High Hydrogen Demand Transmission Hubs Distribution All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1; except: [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Forschungszentrum Jülich IEK-3 [4] Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Straßenverkehr, to be published

Hydrogen for Transportation Cost Comparison of Power to Gas Options – Pre-tax Hydrogen for Transportation with a Dedicated Hydrogen Infrastructure is Economically Reasonable Hydrogen for Transportation CAPEX via depreciation of investment plus interest 10 a for electrolysers and other production devices 40 a for transmission grid 20 a for distribution grid and refueling stations Interest rate 8.0 % p.a. Other Assumptions: 2.9 million tH2/a from renewable power via electrolysis Electrolysis: η = 70 %LHV, 28 GW; investment cost 500 €/kW Methanation: η = 80 %LHV Appreciable cost @ half the specific fuel consumption [1] Energy Concept 2.0

Infrastructure Analysis (simplified) [1] [2] [3] [4] Infrastructure Analysis (simplified) Infrastructure of Energy Concept 2.0 Cost Aanalysis [Bn €] Infrastructure of the Energiewende Cost Analysis [Bn €] [2,5] [2-5,6] A dedicated hydrogen pipeline grid is feasible [1] Electrolyzer @ 500 €/kW [2] PV @ 1000 €/kW; wind onshore @ 1400 €/kW; offshore @ 3000/kW; Installed capacities after [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen [4] 42 GW GT + comb. Cycles, 23 GW already in place [5] Zeitreihen zur Entwicklung Erneuerbarer Energien, BMWi, August 2016 [6] Netzentwicklungsplan NEP 2025, BNA

? Linking the Power and Transport Sector Residual energy [MWh/km²] Negative residual energy (Surplus) Residual energy [MWh/km²] ? Positive residual energy

Fuel cost of BEV and FCV based on detailed infrastructure cost estimates BEV with 1 home charger per car and for the cases of additionally (BEV charging on motorways not considered  not the cost driver) [1]: 1 public charger per 4 cars 1 public charger per 10 cars FCV according to IEK-3‘s Energy Concept 2.0 [2]: H2-cost evolution for full-fledged transmission grid, with demand-driven installation of Electrolysers, storage capacities, distribution grid and fueling stations Investdaten Tankstellen & Pipeline immer 20 + 19 Mrd., Speicher und Elektrolyse mit 1/30 bzw. 6/30 des Gesamtinvests A FCV infrastructure is more cost expensive for the market introduction compared to a BEV but at a high market share this changes fundamentally in favour to the FCV [1] Grube, T., Linke, A., Xu, D., Robinius, M., Stolten, D.. (2017): Kosten von Ladeinfrastrukturen für Batteriefahrzeuge in Deutschland, 10. Internationale Energiewirtschaftstagung (to be published) [2] Robinius, M. (2015). Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Jülich, RWTH Aachen University.

i.e. if and when the energy sectors get interconnected Conclusion An overwhelmingly renewable energy supply entails overcapacity in installed power and hence entails “excess power” 80% of CO2 reduction requires interconnection of the energy sectors  Hydrogen as fuel for automotives Conversion of excess power to hydrogen and storage thereof is feasible on the scale needed (TWh) Hydrogen as an automotive fuel is cost effective other than feed-in to the gas grid or reconversion to electricity Storage gets necessary if CO2 is to be cleaned up beyond the power sector; i.e. if and when the energy sectors get interconnected

Thank you for your attention Process and Systems Analysis (VSA) + Until now 8 Phd Students and one Post-doc  Still growing Prof. Dr. Detlef Stolten Head of IEK-3 d.stolten@fz-juelich.de Dr. Bernd Emonts Deputy Head of IEK-3 b.emonts@fz-juelich.de Dr. Martin Robinius Head of VSA m.robinius@fz-juelich.de Dr. Peter Markewitz Stationary Energy Systems p.markewitz@fz-juelich.de Dr. Alexander Otto Infrastructure and Sector Coupling a.otto@fz-juelich.de Dr. Thomas Grube Transport th.grube@fz-juelich.de

Hydrogen for Transportation Cost Comparison of Power to Gas Options – Pre-tax Hydrogen for Transportation with a Dedicated Hydrogen Infrastructure is Economically Reasonable Hydrogen for Transportation Hydrogen or Methane to be Fed into Gas Grid CAPEX via depreciation of investment plus interest 10 a for electrolysers and other production devices 40 a for transmission grid 20 a for distribution grid and refueling stations Interest rate 8.0 % p.a. Other Assumptions: 2.9 million tH2/a from renewable power via electrolysis Electrolysis: η = 70 %LHV, 28 GW; investment cost 500 €/kW Methanation: η = 80 %LHV Appreciable cost @ half the specific fuel consumption [1] Energy Concept 2.0