Boltzmannscher Exponentialsatz

Slides:



Advertisements
Ähnliche Präsentationen
Transportvorgänge in Gasen
Advertisements

Thermische Eigenschaften von Werkstoffen
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Wärme als eine Energieform
Kapitel 5: Wärmelehre 5.2 Ideale Gase.
Kapitel 5: Wärmelehre 5.1 Temperatur und Wärme.
Thermodynamik Definitionen -Enthalpie -Entropie -Gibbs Energie
Temperatur, Druck im mikroskopischen Bild
Einführung in die Physische Geographie
3 Die chemische Reaktion 3.3 Zustandsdiagramme
Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?
Besetzungswahrscheinlichkeiten der Energiezustände:
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Innere Energie Wagen stößt gegen die Wand
Aggregatszustand Aggregation: Anordnung von Teilchen in einem Gegenstand. (von lat. aggregare anhäufen, zusammensetzen) 3 Grundprinzipien der Teilchenanordnung:
Innere Energie Wagen stößt gegen die Wand
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße - mittlere.
Chemie in der 10. Klasse NTG
Von Molekülen zu Systemen
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Grundlagen der Physiologie
Energieformen und Energiequellen
Kapitel 7: Stichworte Zustandsgröße, Zustandsgleichung
Hydrations-enthalpie
Energie in Form von Wärme
Heißluftballon Der aufsteigende Heißluftballon nutzt Wärme, um Hubarbeit zu verrichten Das Volumen des Ballons beträgt etwa 4000m3. Ein Teil der erwärmten.
kein Wärmekontakt zu Umgebung (Q=0),Temp. variabel W = ∆U
Warum ist die Thermodynamik interessant?
Tutorien: Seminarraum 411, Geb (PC-Turm, 4.OG)
Wdh. Letzte Stunde 1.Hauptsatz
Arbeitsfluids Fluid besteht aus Atomen/Molekülen Bild = Wasser flüssig
Temperatur, Druck im mikroskopischen Bild
Linde Verfahren komprimierte Luft Kühler expandierte Luft
Themen der Vorlesung “Physikalische Chemie” im Pharmaziestudium
Reale Gase, Phasenumwandlungen
Elektrolyse von Wasser
Berechnung der Gitterenthalpie von NaCl
Elektrolyse von Wasser
2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik
Wirkung der Temperatur auf physikalische Eigenschaften
Ideale Gase p ·V = n ·R ·T p ·V = const V = Vo(1+ ·t) V n
Wasserlöslichkeit von Salzen
d– d+ d– d+ – d– d+ – d– d+ – – d– d+ – d– d+ – – – d– d+ – d– d+ – –
Das dynamische Gleichgewicht
Physik für Mediziner und Zahnmediziner
Joule-Thomson Experiment
Onsagersche Gleichung. Energetische Beziehungen
Lehrplan Kenntnis der grundlegenden physikalischen Gesetze
2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik
Wechselwirkungsenergie
7. Zweiter Hauptsatz der Thermodynamik Carnot-Maschine Wirkungsgrad
Chemische Verfahrenstechnik
Kapitel 3.7: Berechnung von Änderun-gen der Enthalpie und inneren Energie Prof. Dr.-Ing. Ch. Franke.
Kapitel 3.6: Kalorische Zustands-gleichung für die Enthalpie
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Galilei Leibniz Newton‘s Mechanics Stellar Orbits Gravity Gaub
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Elektronik Lösungen.
Kapitel 5: Wärmelehre 5.2 Ideale Gase.
Seminar Fachdidaktik der Physik E. Kneringer
3 Die chemische Reaktion 3.5 Das chemische Gleichgewicht
von Fuchs Engelbert Fachdidaktik
Joule-Thomson-Effekt
Thermische Energie und Wärme
Ericsson Kreisprozess ©Wolflehner Marcel. Definition Ist ein thermodynamischer Kreisprozess Erfinder Johan Ericsson (schwedischer Ingenieur) Dient als.
Energie und chemische Reaktionen
Verfahrens- und Umwelttechnik Prof. Dr. Freudenberger
Lernziele SW 9: Kreisprozesse
Thermische Eigenschaften von Werkstoffen
 Präsentation transkript:

Boltzmannscher Exponentialsatz Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Boltzmannscher Exponentialsatz Wahrscheinlichkeit, ein Molekül in Energieniveau εi zu finden (hier 1 mol, d.h. Nges =NA) q - Zustandssumme

Boltzmannscher Exponentialsatz Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Boltzmannscher Exponentialsatz Wahrscheinlichkeit, ein Molekül in Energieniveau εi zu finden (hier 1 mol, d.h. Nges =NA) q - Zustandssumme

Innere Energie, Berechnung aus mikroskopischen Eigenschaften Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Innere Energie, Berechnung aus mikroskopischen Eigenschaften

Spezialfall: äquidistante Niveaus (Schwingung) Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Spezialfall: äquidistante Niveaus (Schwingung)

Spezialfall: äquidistante Niveaus (Schwingung) Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Spezialfall: äquidistante Niveaus (Schwingung)

Spezialfall: Festkörper (Einstein-Modell) Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Spezialfall: Festkörper (Einstein-Modell)

Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Typischer Verlauf der Wärmekapazität eines Gases als Funktion der Temperatur 1 R N2 2/2 R 3/2 R

Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Typischer Verlauf der Wärmekapazität eines Gases als Funktion der Temperatur 4 R CO2 2/2 R 3/2 R

Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen

Quelle: Atkins

pA,TA pE, TE Quelle: Atkins

Inversions- und Siedetemperaturen sowie Joule-Thomson-Koeffizienten bei 298 K und 1 bar Tinv / K Tsiede/ K µ /Kbar-1 N2 621 77 0.25 H2 202 20 -0.03 He 40 4 -0.06

Quelle: Atkins

1/T 1/p 3/2 R 5/2 R 3/2 R 5/2 R R ideales Gas Thermischer Ausdehnungs- koeffizient Isotherme Kompressibilität Joule-Thomson-Koeffizient 1/T 1/p 3/2 R 5/2 R 3/2 R 5/2 R R ideales Gas

Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen 2.6 Thermochemie

Kirchhoff‘scher Satz (Temperaturabhängigkeit von H) Edukte Produkte Temperatur T gesucht: ΔrH(T) 298 K Edukte Produkte ΔrH(298 K)

+122 kJ/mol -351 kJ/mol +498 kJ/mol +107 kJ/mol +411 kJ/mol Dissoziation von Cl2 +122 kJ/mol Elektronenanlagerung an Cl = -Elektronenaffinität -351 kJ/mol Ionisierung von Na +498 kJ/mol Na+ und Cl- Ionen in der Gasphase Sublimation von Na +107 kJ/mol gesucht: Gitterenthalpie von NaCl Spaltung von NaCl (s) in die Elemente = -Bildungsenthalpie von NaCl(s) +411 kJ/mol festes Kochsalz