Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Geometrie und Topologie von Merkmalen -Gestalt von Merkmalen -Konstruktion.

Ähnliche Präsentationen


Präsentation zum Thema: "Geometrie und Topologie von Merkmalen -Gestalt von Merkmalen -Konstruktion."—  Präsentation transkript:

1 Geometrie und Topologie von Merkmalen -Gestalt von Merkmalen -Konstruktion

2 In einer Geodatenbasis, in der das Vektordaten- model benutzt wird, sind die Vektordaten als Merkmale (features) eingefügt und in Merkmaldatensets und Merkmalklassen gespeichert.

3 Merkmale haben folgende Vorteile, um Daten zu modellieren: -Merkmale sind eindeutig abgespeichert mit ihren Attributen, Beziehungen und ihrem Verhalten -Merkmale haben eine genaue Lage mit einer eindeutig bestimmten geometrischen Gestalt. In ArcMap können räumliche Operatoren angewandt werden, mit denen die Merkmale auf Überlappungen etc. überprüft werden. -Merkmale können in jeder Farbe, mit jeder Linienstärke, jedem Muster oder anderen kartographischen Symbolen dargestellt werden.

4 Die Grundlage, um ein Merkmal in einer Geodatenbasis zu repräsentieren, ist seine Geometrie oder Gestalt.

5 -jedes Merkmal hat seine eigene Gestalt oder Geometrie, die in der Geodatenbasis in der feature class unter shape gespeichert ist -es gibt zwei Sorten von Geometrien: -solche, die die Gestalt des Merkmals definieren -solche, die Komponenten von diesen Gestalten sind Das geometrische System:

6 Merkmalgeometrien: Ein Merkmal kann durch einen der folgenden Geometrie- typen konstruiert werden: Points: Point -Punkte sind null-dimensionale Geometrien -Sie haben x- und y-Koordinate, sowie eine frei wählbare Höhe z, ein Maß m und eine point ID -Punkte werden gebraucht, um kleine Merkmale wie z.B. Brunnen zu repräsentieren

7 Multipoints: Multipoints -Multipoints sind ungeordnete Ansammlungen von Punkten -Sie repräsentieren eine Gruppe von Punkten mit gemeinsamen Attributen wie z.B. eine Gruppe von Brunnen, die eine Einheit bilden

8 Polylines: Polylinie mit einem Pfad Polylinie mit mehreren verbundenen Pfaden Polylinie mit mehreren disjunkten Pfaden -Eine Polylinie ist eine geordnete Ansammlung von Pfaden, die entweder verbunden oder disjunkt sein können -Sie repräsentieren die Geometrie von allen linearen Merkmalen wie Straßen, Flüsse und Begrenzungen -Einfache lineare Merkmale werden durch Polylinien mit einem Pfad repräsentiert, komplexe lineare Merkmale durch Polylinien mit vielen Pfaden

9 Polygone: Polygon mit einem Ring Polygon mit mehreren disjunkten Ringen Polygon mit innerem und Insel-Ring -Ein Polygon ist eine Sammlung von Ringen -Sie repräsentieren die Geometrie von allen Gebietsmerkmalen -Wenn Ringe ineinander verschachtelt sind, wechseln sich innere und Insel-Ringe ab -Ringe in einem Polygon können disjunkt sein. Sie können sich aber nicht überlappen

10 Envelope: Upper Right Geometrie XMinXMax YMax YMin Upper Left Lower Left Lower RightEnvelope -Ein Envelope ( Umschlag ) repräsentiert die räumliche Ausdehnung von Merkmalen -Er ist ein Rechteck, das die Minimum- und Maximum-Koordinaten einer Geometrie aufspannt -Die Seiten sind parallel zu einem Koordinatensystem -Alle Geometrien haben Envelopes. Sie ermöglichen in ArcInfo eine schnelle Darstellung und räumliche Auswahl von Merkmalen

11 Komponenten von Merkmalgeometrien: Komponenten sind Segmente, Pfade und Ringe. Segmente haben einen Start- und Endpunkt. Zwischen diesen Punkten wird eine Kurve beschrieben. Es gibt vier Typen von Segmenten: Line Circular arc Elliptical arc Bézier curve

12 Ein Pfad ist eine Reihenfolge von verbundenen Segmenten, wobei sich die einzelnen Segmente nicht schneiden können. Pfade bilden Polylinien. Pfad mit einem Liniensegment Pfad mit zwei Bézier curve Segmenten Pfad mit einem circular arc und zwei Liniensegmenten Die Segmente, die einen Pfad beschreiben, sind oft tangential zueinander. D.h. sie schließen im gleichen Winkel aneinander an. Beispiele sind Straßen, die aus Linien und Circular arcs bestehen oder auch Höhenlinien, die mit tangentialen Bézier Kurven gebildet werden.

13 Ein Ring ist ein geschlossener Pfad mit eindeutigem Inneren und Äußeren. Die Koordinaten des Start- und Endpunkts sind dieselben. Ringe bilden Polygone.

14 Attribute von Merkmalgeometrien: Wenn man eine Merkmalklasse erstellt, kann man den Punkten der Merkmalgeometrie drei Attribute zuschreiben: -einen z-Wert -einen m-Wert -eine Point ID Vertikalmaße mit z-Werten ArcInfo ist eigentlich ein zweidimensionales System. Man kann aber jedem Punkt einen z-Wert zuordnen, der meistens die Höhe beschreibt. Er kann aber auch eine andere Eigenschaft repräsentieren wie z.B. die Regenfallquote.

15 Lineare Maße mit m-Werten Einige Anwendungen gebrauchen m-Werte, die auf interpolierten Strecken basieren und jedem Punkt zugeordnet werden können. Ein Beispiel ist die Stationierung entlang einer Straße oder eines Kanals. Mit Hilfe eines solchen geometrischen Systems lassen sich m-Werte zwischen zwei Punkten interpolieren oder es lassen sich die x-, y-Koordinaten mit gegebenem m-Wert entlang eines Pfades berechnen Polylinie mit m-Werten

16 Punkte mit Point ID: Manchmal werden Punkte mit einem eindeutigen und einzigartigen Kennzeichen versehen. Wie z.B. eine Punktnummer. Der ArcMap Editor fügt z-, m-Werte und PointIDs nicht direkt ein. Wenn man Merkmale einfügt, sind diese Werte, die für eine Merkmalgeometrie bestehen, geschützt. Wenn ein Merkmal mit m-Werten aufgespalten wird, werden die m-Werte für die Punkte der aufgespaltenen Merkmale automatisch interpoliert.

17 Konstruktion von Merkmalen: ArcInfo verfügt über viele Methoden zur Konstruktion von neuen Geometrien mit Hilfe von Strecken, Winkeln und Beziehungen zu bereits bestehenden Geometrien. Winkel werden normalerweise gegen den Uhrzeigersinn ausgehend von der positiven x-Achse gezählt. Manchmal werden aber auch Abweichwinkel benutzt, die von einem Punkt zu einer Basislinie gemessen werden. geometric angle point baseline deflection angle

18 Punktkonstruktion: Construct along: Bei gegebener Kurve und Strecke wird der Punkt entlang der Kurve gesetzt. Strecke Kurve Strecke Kurve Construct Angle Bisector: 1/2 Länge through-point from-point to-point Gegeben ist ein from-point, through-point, to-point und eine Länge. Der Winkel zw. den Punkten wird halbiert und der Punkt mit der Länge entlang der Winkelhalbierenden gesetzt.

19 Construct Angle Intersection: Durch zwei gegebene Punkte und Winkel lässt sich der Schnittpunkt der durch die Punkte und Winkel bestimmten Strahlen bestimmen. Construct Deflection: Basislinie Strecke Gegeben ist eine Basislinie, ein Winkel und eine Strecke. Dadurch kann der Punkt bestimmt werden. Construct Deflection Intersection: Gegeben ist eine Basislinie und zwei Winkel. Der Schnittpunkt der so definierten Strahlen bildet den neuen Punkt. Basislinie

20 Construct Offset: Streckeoffset Der neue Punkt wird durch die Strecke entlang einer Kurve ( Pfad ) und der offset-Strecke bestimmt. Ist der Wert positiv ( negativ ), liegt der Punkt rechts ( links ). Construct Parallel: Punkt Pfad Strecke Gegeben ist eine gerade Linie, ein Punkt und eine Strecke. Der neue Punkt liegt dann auf der Parallelen.

21 Multipoint-Konstruktion: Construct Circular Arc Points: Start- punkt Mittel- punkt End- punkt Tangenten- schnittpunkt Gegeben ist ein Circular Arc. Der Start- und Endpunkt, sowie der Mittelpunkt und der Tangentenschnittpunkt werden rekonstruiert. Construct Divide Equal: Gegeben ist eine Kurve und eine ganze Zahl n, die die Anzahl der neuen Punkte bestimmt. Die Kurve wird dann in gleichgroße Teilstücke eingeteilt. n=2

22 Construct Divide Length: 1.Strecke 2.Strecke Gegeben ist eine Kurve und eine Länge. Es werden soviele Punkte wie mit dieser Länge möglich sind auf der Kurve plaziert. Construct Implied Intersection: Gegeben sind zwei Segmente. Die bestehenden Schnittpunkte und die möglichen Schnittpunkte werden gebildet.

23 Construct Intersection: Hierbei werden nur die bestehenden Schnittpunkte konstruiert. Construct Tangent: Gegeben ist ein Circular arc und ein Punkt. Konstruiert werden die Berührpunkte der Tangenten vom Punkt an den Kreis.

24 Construct Three Point Resection: Gegeben sind drei Punkte und zwei Winkel, die von einem unbekannten vierten Punkt aus gemessen sind. Dieser vierte Punkt wird berechnet und plaziert.

25 Linienkonstruktion: Line Construct Angle Bisector: 1/2 from- point through-point to-point Länge Gegeben ist ein from-point, through-point, to-point und eine Länge. Der Winkel, der durch diese Punkte bestimmt wird, wird halbiert und eine Linie mit der angegebenen Länge konstruiert.

26 Circular Arc-Konstruktion: Construct Arc Distance: Mittelpunkt Startpunkt Bogenmass (Strecke) Hierbei ist ein Startpunkt, Mittelpunkt und eine Strecke gegeben. Der Kreisbogen wird gegen den Uhrzeigersinn konstruiert. Construct Chord Distance: Startpunkt Mittelpunkt Sehnen- länge Mit gegebenem Mittelpunkt, Startpunkt und einer Sehnenlänge kann ein Kreisbogen gebildet werden.

27 Construct Chord Height: from-pointto-point Sehnenhöhe Mit einem from-point, einem to-point und über die Sehnenhöhe lässt sich ein Kreisbogen erstellen. Construct Fillet: 1.Segment 2.Segment Radius Durch zwei gegebene Segmente und den Radius wird der Kreisbogen tangential zu den Segmenten konstruiert.

28 Construct Tangent and Point: Punkt Segment Gegeben ist ein Punkt und ein Segment. Der Kreisbogen wird zwischen dem Punkt und dem Anfangs- bzw. Endpunkt des Segments gebildet. Construct Three Points: Startpunkt Endpunkt Mittlerer Punkt Es wird ein Kreisbogen durch die drei Punkte konstruiert.

29 Construct Two Points and Radius: Radius Startpunkt Endpunkt Durch Start-, Endpunkt und den Radius wird der Kreisbogen bestimmt.

30 Kurvenkonstruktion: Construct Offset: Output curve Input curve offset Gegeben ist eine input-Kurve. Mit einem Abstand (offset) wird die output-Kurve konstruiert.

31 Pfadkonstruktion: Construct Rigid Stretch: Gegeben ist ein Pfad und ein Dehnungsvektor, um den der Pfad gestreckt wird und so ein neuer Pfad entsteht.

32 Winkelkonstruktion: Construct Line: Linie Von der gegebenen Linie wird der dazugehörige Winkel berechnet. Angle Construct Three Points: through-point from-point to-point Der Winkel, der durch die drei gegebenen Punkte bestimmt wird, wird berechnet.


Herunterladen ppt "Geometrie und Topologie von Merkmalen -Gestalt von Merkmalen -Konstruktion."

Ähnliche Präsentationen


Google-Anzeigen