Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Algorithmen der Grundrechenarten in verschiedenen Ländern Referentin: Julia Grote.

Ähnliche Präsentationen


Präsentation zum Thema: "Algorithmen der Grundrechenarten in verschiedenen Ländern Referentin: Julia Grote."—  Präsentation transkript:

1 Algorithmen der Grundrechenarten in verschiedenen Ländern Referentin: Julia Grote

2 Gliederung Was ist ein Algorithmus? Was ist ein Algorithmus? Das Beispiel Deutschland zur Verdeutlichung des Algorithmusbegriffs Das Beispiel Deutschland zur Verdeutlichung des Algorithmusbegriffs Allgemeine Unterschiede Allgemeine Unterschiede Andere Länder im Vergleich Andere Länder im Vergleich

3 Was ist ein Algorithmus? Unter einem Algorithmus versteht man allgemein eine genau definierte Handlungsvorschrift zur Lösung eines Problems oder einer bestimmten Art von Problemen. Unter einem Algorithmus versteht man allgemein eine genau definierte Handlungsvorschrift zur Lösung eines Problems oder einer bestimmten Art von Problemen. 5 Bedingungen: 5 Bedingungen: –Allgemeingültigkeit: Die Anweisungen besitzen Gültigkeit für die Lösung einer ganzen Problemklasse, nicht nur für ein Einzelproblem. –Ausführbarkeit: Die Anweisungen müssen verständlich formuliert sein für den Befehlsempfänger und für diesen ausführbar sein. –Eindeutigkeit: An jeder Stelle muss der Ablauf der Anweisung eindeutig sein. –Endlichkeit: Die Beschreibung der Anweisungsfolge muss in einem endlichen Text erfolgen. –Terminiertheit: Nach endlich vielen Schritten liefert die Anweisungsfolge eine Lösung des gestellten Problems.

4 Das Beispiel Deutschland zur Verdeutlichung des Algorithmusbegriffs

5 Deutschland Schriftliche Addition Schriftliche Addition529 +336 ______1__ ______1__865

6 Schriftliche Subtraktion Unterscheidung zwischen Unterscheidung zwischen –Wegnehmen als Subtraktion: Norddeutsches Verfahren, bzw. Borgeverfahren –Ergänzen als Subtraktion: Süddeutsches Verfahren, bzw. Österreichische Subtraktionsmethode

7 Norddeutsches Borgeverfahren Ausführliche Sprechweise 8 minus 9 lässt sich nicht rechen. Ein Zehner wird entbündelt. 18 minus 9 gleich 9. 2 (Zehner) minus 5 (Zehner) lässt sich nicht rechnen. Ein Hunderter wird entbündelt. 12 minus 5 gleich 7. 5 (Hunderter) minus 2 (Hunderter) gleich 3. Ausführliche Schreibweise 10 10 638 -259 379

8 Schriftliche Subtraktion Gemäß Vereinbarung der KMK: schriftliche Subtraktion durch Ergänzen Süddeutsche Verfahren scheint weniger fehleranfällig zu sein Süddeutsche Verfahren scheint weniger fehleranfällig zu sein

9 Deutschland Schriftliche Subtraktion Schriftliche Subtraktion 638 - 259 __1 1__ 379

10 Deutschland Schriftliche Multiplikation Schriftliche Multiplikation 369 * 124 369 369 738 738 1476 1476 ___ 1 1 1____ ___ 1 1 1____ 45756 45756

11 Deutschland Schriftliche Division Schriftliche Division 108117 : 879 = 123 879 879 2021 2021 1758 1758 2637 2637 0

12 Allgemeine Unterschiede Addition/Subtraktion: –In vielen Ländern kein Aufschreiben der Überträge Subtraktion: –Meist Sprechweise nicht additiv, sondern subtraktiv –Häufig Abziehen mit Entbündeln (Borgeverfahren)

13 Allgemeine Unterschiede Multiplikation: –Rechenzeichen häufiger das Kreuz (x) –Beide Faktoren werden zumeist untereinander geschrieben –Häufig wird mit den Einern begonnen Treppe verläuft von rechts nach links Treppe verläuft von rechts nach links

14 Allgemeine Unterschiede Division: –Häufig weder Divisions- noch Gleichheitszeichen –Eher: erste Zahl durch senkrechten Strich vom Divisor abgetrennt(unterschiedlich lang) erste Zahl durch senkrechten Strich vom Divisor abgetrennt(unterschiedlich lang) waagerechter Strich unter den Divisor und darunter der Quotient waagerechter Strich unter den Divisor und darunter der Quotient

15 Andere Länder im Vergleich Spanien Spanien Mexiko Mexiko China China Russland Russland Ungarn Ungarn Griechenland Griechenland England England Frankreich Frankreich Ägypten Ägypten (Bezug auf Aussagen von Personen unterschiedlicher Nationalität)

16 Addition Spanien Mexiko China Russland Ungarn Griechenland England Frankreich Ägypten

17 Gemeinsamkeiten/Unterschiede Gemeinsamkeiten/Unterschiede Mexiko, Russland, Ungarn: Übertrag über den Summanden Mexiko, Russland, Ungarn: Übertrag über den Summanden Spanien, England, Frankreich: Übertrag unter die Summe Spanien, England, Frankreich: Übertrag unter die Summe China: Übertrag unter den Summanden China: Übertrag unter den Summanden Griechenland: Übertrag über die Summe Griechenland: Übertrag über die Summe Ägypten: Pluszeichen auf der rechten Seite Ägypten: Pluszeichen auf der rechten Seite

18 Subtraktion Spanien Mexiko China Russland Ungarn Griechenland England Frankreich Ägypten

19 Gemeinsamkeiten/Unterschiede Gemeinsamkeiten/Unterschiede Mexiko, Russland, England: Borgeverfahren, subtraktive Sprechweise Mexiko, Russland, England: Borgeverfahren, subtraktive Sprechweise Spanien, Frankreich: Übertrag unter die Differenz Spanien, Frankreich: Übertrag unter die Differenz China, Ungarn: Übertrag unter den Subtrahenden China, Ungarn: Übertrag unter den Subtrahenden Griechenland: Übertrag über die Differenz Griechenland: Übertrag über die Differenz Ägypten: Minuszeichen auf der rechten Seite Ägypten: Minuszeichen auf der rechten Seite

20 Multiplizieren mit der Feder nach Adam Ries Willst du nun eine Zahl mit einer Ziffer multiplizieren, so schreibe die Zahl, die du multiplizieren willst, oben und die Ziffer, mit der du multiplizieren willst, direkt unter die letzte Ziffer. Sodann multipliziere sie mit der letzten Ziffer. Kommt eine Zahl mit einer Ziffer heraus, so setze sie unten. Im Falle einer zweizifferigen Zahl schreibe die letzte Ziffer, die andere behalte im Sinn. Sodann multipliziere die untere Ziffer mit der zweitletzten der oberen Zahl und gib dazu, was du behalten hast. Schreibe abermals die letzte Ziffer und so fort. Zuletzt schreibe die Zahl ganz aus wie hier

21 Multiplizieren mit der Feder nach Adam Ries Willst du eine Zahl mit zwei Ziffern multiplizieren, so führe es mit der letzten Ziffer so durch, wie eben gesagt. Sodann führe es auch in gleicher Weise mit der anderen Ziffer durch, setzte aber das Ergebnis um eine Ziffer weiter nach links eingerückt. Danach zähle zusammen wie hier In gleicher Weise multipliziere auch mit drei oder mehr Ziffern, nur setze die Ergebnisse jeweils um eine Ziffer weiter eingerückt,... Zitiert nach der von S. Deschauer (1992) modernisierten Textfassung der Ausgabe von 1522 des zweiten Rechenbuchs von Adam Ries.

22 Multiplikation Spanien Mexiko China Russland Ungarn Griechenland England Frankreich Ägypten

23 Gemeinsamkeiten/Unterschiede Gemeinsamkeiten/Unterschiede Spanien, Mexiko, China, Griechenland, England, Ägypten: Verwendung des x; Faktoren werden untereinander geschrieben; Beginn mit den Einern Spanien, Mexiko, China, Griechenland, England, Ägypten: Verwendung des x; Faktoren werden untereinander geschrieben; Beginn mit den Einern Russland, Ungarn: Verwendung des Malpunktes; Beginn (hier) mit den Hundertern Russland, Ungarn: Verwendung des Malpunktes; Beginn (hier) mit den Hundertern Ungarn: Abtrennungsstrich wird nur bis unter den ersten Faktor gezogen Ungarn: Abtrennungsstrich wird nur bis unter den ersten Faktor gezogen Frankreich: Verwendung des x; Faktoren werden nebeneinander geschrieben; Beginn mit den Einern Frankreich: Verwendung des x; Faktoren werden nebeneinander geschrieben; Beginn mit den Einern Ägypten: x-Zeichen auf der rechten Seite Ägypten: x-Zeichen auf der rechten Seite

24 Division Spanien Mexiko China Russland Ungarn Griechenland England Frankreich Ägypten

25 Gemeinsamkeiten/Unterschiede Spanien, Mexiko, Russland, Griechenland, England, Frankreich: Verwendung von waagerechtem und senkrechtem Strich, unterschiedlich angelegt und lang Spanien, Mexiko, Russland, Griechenland, England, Frankreich: Verwendung von waagerechtem und senkrechtem Strich, unterschiedlich angelegt und lang China, Ungarn: Verwendung von Doppelpunkt und Gleichheitszeichen China, Ungarn: Verwendung von Doppelpunkt und Gleichheitszeichen Ägypten: Dividend und Divisor untereinander, darunter ein waagrechter Strich, darunter der Quotient Ägypten: Dividend und Divisor untereinander, darunter ein waagrechter Strich, darunter der Quotient108117 879 879123 108117 879 1081 - 879 = 202 879 1081 - 879 = 202 1 108120217 879 2021 - (2*879) = 263 879 2021 - (2*879) = 263 12 12 108120212631 879 2631 - (3*879) = 0 879 2631 - (3*879) = 0 123 123

26 Literaturliste Arbeiter, J. (1974). Algorithmen: schriftliche Rechenverfahren. Weinheim: Julius Beltz Verlag Arbeiter, J. (1974). Algorithmen: schriftliche Rechenverfahren. Weinheim: Julius Beltz Verlag Damerow, P./ Schmidt, S. (2001). Arithmetik im historischen Prozeß: Wie natürlich sind die natürlichen Zahlen ? Damerow, P./ Schmidt, S. (2001). Arithmetik im historischen Prozeß: Wie natürlich sind die natürlichen Zahlen ? In: Müller, G.N./ Steinbring, H./ Wittmann E.Ch. (Hrsg.). Arithmetik als Prozeß. Stuttgart: Klett Prediger, S./ Schroeder, J. (2003). Mit der Vielfalt rechnen: Interkulturelles Lernen im Mathematikunterricht. Prediger, S./ Schroeder, J. (2003). Mit der Vielfalt rechnen: Interkulturelles Lernen im Mathematikunterricht. U. Harzer (1999). Algorithmen. http://schulen.freiepresse.de/gymnasiumolbernhau/informatik [07.06.06] U. Harzer (1999). Algorithmen. http://schulen.freiepresse.de/gymnasiumolbernhau/informatik [07.06.06] Wikipedia (2006). Algorithmus. http://de.wikipedia.org/wiki/Algorithmus [07.06.06] Wikipedia (2006). Algorithmus. http://de.wikipedia.org/wiki/Algorithmus [07.06.06]


Herunterladen ppt "Algorithmen der Grundrechenarten in verschiedenen Ländern Referentin: Julia Grote."

Ähnliche Präsentationen


Google-Anzeigen