Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Die Vorlesung Statistische Methoden II findet am 18.5.2007 (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.

Kopien: 3
Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.

TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)

Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.

Ähnliche Präsentationen


Präsentation zum Thema: "Die Vorlesung Statistische Methoden II findet am 18.5.2007 (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt."—  Präsentation transkript:

1 Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt gegeben wird, nachgeholt.

2 TESTS

3 Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe) Entscheidung Vorgabe: Irrtumswahrscheinlichkeit Formulierung einer HypotheseNullhypothese In der Statistik kann man nie ganz sicher sein. Die Irrtumswahrscheinlichkeit sollte wenigstens klein sein.

4 Mathematischer Rahmen I TESTS Statistische Struktur Testproblem (Hypothese)Nullhypothese Gegeben sind: Stetiger Fall Diskreter Fall Niveau

5 Mathematischer Rahmen II TESTS Test Test gegeben durch: Ablehnungsbereich Teilmenge der Grundgesamtheit : Menge aller Beobachtungen, die zur Ablehnung der Hypothese führen

6 Mathematischer Rahmen III TESTS Beobachtung (Stichprobe) Entweder Oder Beobachtung liegt im Annahmebereich Beobachtung liegt im Ablehnungsbereich Hypothese annehmen! Hypothese ablehnen!

7 Fehler erster und zweiter Art

8 Hypotheseakzeptiert Hypothese abgelehnt Hypothesewahr Hypothese falschEntscheidungRealität Fehler 1. Art Fehler 2. Art

9 Niveau und Macht Obere Grenze für die Wahrscheinlichkeit, Fehler 1. Art einen Fehler 1. Art zu begehen Niveau Wahrscheinlichkeit, keinenFehler 2. Art keinen Fehler 2. Art zu begehen, wenn der wahre Parameterwert in dem Punkt liegt Macht Macht in einem Punkt der Alternative

10 2 Würfel Fairer Würfel Gezinkter Würfel 1/6 1/5 ? ?

11 Tafel für die Verteilungsfunktion bei Normalverteilung

12 Neyman-Pearson-Test Für einen Test mit gilt immer: Sei * ein Neyman-Pearson Test vom Niveau. Dann insbesondere:

13 Jeder Test, der vom Niveau eines gegebenen Neyman- Pearson-Tests ist, besitzt höchstens die Macht höchstens die Macht dieses Neyman-Pearson-Tests.

14 Geboren in London. Er versuchte, statistische Methoden auf biologische Probleme der Vererbung und der Evolution anzuwenden. In 18 Veröf- fentlichungen mit dem Titel Mathematical Contributions to the Theory of Evolution führte er die Regressions-Analyse, den Korrelationsko- effizienten und den Chi-Quadrat-Test ein.

15 Geboren in London als Sohn von Karl Pearson. Egon Pearson arbeitete ab 1921 im Institut seines Vaters am University College in London. Er besuchte zunächst alle Vorlesungen seines Vaters mit dem Erfolg, dass er bald selbst hervorragende Arbeiten auf dem Gebiet der Statistik produzierte. S. Neyman war als Stipendiat am University College. Die Zusammenarbeit mit Egon Pearson begann.

16 Geboren in Bendery, Moldavien. Als Jerzy Neyman sein Stipendium in London antrat, um mit Karl Pearson zusammenzuarbeiten, war er enttäuscht als er feststellte, dass Karl Pearson die moderne Mathematik ignorierte. Er kooperierte dann mit Egon Pearson und revolutionierte durch seine Ergebnisse die Statistik.

17 Der Logharithmus ln x ist streng monoton wachsend

18 Tafel für die Verteilungsfunktion bei Normalverteilung

19 Approximative Konfidenzintervalle im Bernoulli-Fall II Vereinfachung für großes n (n 100)

20 Tafel für die Verteilungsfunktion bei Normalverteilung

21 Beispiel Kaufhaus-Konzern Kauf würde in Erwägung gezogen Kauf würde nicht in Erwägung gezogen

22 Zusammenhang Konfidenzintervalle - Tests Konfidenzintervall Gegeben sei ein Konfidenzintervall C( ) vom Niveau Ablehnungsbereich ist dann mit dem Ablehnungsbereich Für eine einfache Hypothese Test ein Test vom Niveau gegeben, denn:

23 Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Konfidenzniveau Niveau, Konfidenzniveau 1 - Dabei ist die Wahrscheinlichkeit, eine Beobachtung zu machen, für die der wahre Parameter im zugehörigen Intervall liegt, größer oder gleich 1 -

24 Tafel für die Verteilungsfunktion bei Normalverteilung

25 Beispiel Äpfeln Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten Anbaugebiet

26 Tafel für die Verteilungsfunktion bei Normalverteilung AI

27 Tafel für die Verteilungsfunktion bei Normalverteilung AII

28 Tafel für die Verteilungsfunktion bei Normalverteilung AIII

29 BI

30 BII

31 BIII

32 Test für den Erwartungswert Varianz bekannt Fall Normalverteilung

33 Test für den Erwartungswert Varianz unbekannt Fall Normalverteilung

34 1. Fall Vergleich zweier unabhängiger Stichproben 1. Fall 2 unabhängige Stichproben mit Stichprobenvariablen X und Y Annahmen: X und Y normalverteilt Varianz von X = Varianz von Y Hypothese: Erwartungswert von X = Erwartungswert von Y

35 unabhängige Für n unabhängige Zufallsvariablen mit hat man: Mathematische Bedeutung der Chi-Quadrat-Verteilung

36 unabhängige Für unabhängige Zufallsvariablen W und U mit hat man: Mathematische Bedeutung der t-Verteilung

37 1. Fall Vergleich zweier unabhängiger Stichproben 1. Fall Prüfgröße n: Umfang der Stichprobe 1 (Stichprobenvariable X) m: Umfang der Stichprobe 2 (Stichprobenvariable Y) Ablehnungsbereich bestimmt durch

38

39 2. Fall Vergleich zweier unabhängiger Stichproben 2. Fall 2 unabhängige Stichproben mit Stichprobenvariablen X und Y Annahmen: X und Y normalverteilt n und m groß (> 30), damit Approximation der Varianzen sinnvoll Hypothese: Erwartungswert von X = Erwartungswert von Y

40 2. Fall Vergleich zweier unabhängiger Stichproben 2. Fall Ausgangspunkt Approximation Prüfgröße Ablehnungsbereich bestimmt durch


Herunterladen ppt "Die Vorlesung Statistische Methoden II findet am 18.5.2007 (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt."

Ähnliche Präsentationen


Google-Anzeigen