Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Umweltmeteorologie 9. Spurengase

Ähnliche Präsentationen


Präsentation zum Thema: "Umweltmeteorologie 9. Spurengase"—  Präsentation transkript:

1 Umweltmeteorologie 9. Spurengase
Prof. Dr. Otto Klemm 9. Spurengase Prof. Dr. Otto Klemm

2 Bedeutung einzelner Spurengase
Die Bedeutung einzelner Spurengase ergibt sich aus: Konzentration Lebensdauer – Reaktivität Toxizität für Vegetation, Tiere und Menschen, Verteilung zwischen den Phasen Klimawirksamkeit (Strahlungseigenschaften allgemein) Bedeutung in den Elementkreisläufen

3 Überblick Spurengase, stark vereinfacht
Quel-le Sen-ke Was-ser-lös-lich-keit atm. Le-bens- Ad-sorp-tivi-tät Mischungsverhältnis Toxi-zität Klimawirk-sam-keit Bed. Ele-ment-kreisl. div. remote Land Stadt SO2 Emis-sion Oxidation mittel wenige Tage 0 – 0.1 ppb 0.1 – 2 ppb 0.1 – 5 ppb + -- sau-re Nied. NOx einige Tage 0.05 – 1 ppb 1 – 10 ppb 5 – 100 ppb (--) HNO3 Oxi-da-tion aus NO2 Partikel, Wolken, trockDep. sehr hoch Tage 0 – 2 ppb 0 – 4 ppb

4 Überblick Spurengase, stark vereinfacht (Forts.)
Quel-le Sen-ke Was-serlös-lich-keit atm. Le-bens-dauer Ad-sorp-tivität Mischungsverhältnis Toxi-zität Klimawirk-sam-keit Bed. Ele-ment-kreisl. div. remote Land Stadt NH3 Emis-sion Part. Bild-ung hoch Stun-den 0 – 0.1 ppb 0.1 – 5 ppb -- + alkal CO Reak aus CH4 Reak zu CO2 gering Mona-te  40 ppb ppb ppb O3 Reak + Pho-tol. Reak Dep Pho-tol mittel Tage 10 – 30 ppb 20 – 120 ppb 0 – 120 ppb Leits Phot Smog OH Phot Reak gut < 1 s sehr hoch einige ppt einigee ppt Waschm HO2 s bis Stun-den einige 10 er ppt (+)

5 Schwefelhaushalt - Quellen
Anthropogene Quellen 5 % Industrielle Prozesse (SO2) 14 % Ölverbrennung (SO2) 27 % Kohleverbrennung (SO2) 19 % Ozeane (biogen, DMS) 29 % Ozeane (Gischt, SO42-) 6 % Vulkane (SO2) Natürliche Quellen Dimethylsulfid Natürliche / Anthropogene Quellen  1

6 SO2-Emissionen: global, 1985

7 SO2-Emissionen: Europa
Quelle:

8 SO2-Emissionen: Deutschland, 2004
GT % 1. Energie 505 88 A. Verbrennung fossiler Brennstoffe 487 85 1. Energiewirtschaft 317 55 2. Verarbeitendes Gewerbe 91 16 3. Verkehr 1 0.25 davon Straßenverkehr 0.14 4. Übrige Feuerungsanlagen 77 13 davon Gewerbe, Handel, Dienstleistung 21 3.64 davon Haushalte 54 9.47 5. Militär und weitere kleine Quellen 0.07 B. Diffuse Emissionen aus Brennstoffen 18 3.11 1. Feste Brennstoffe 2. Öl und Gas 17 3.04 2. Industrieprozesse 70 12 A. Mineralische Produkte 5 0.95 B. Chemische Industrie 27 4.73 C. Herstellung von Metall 15 2.57 D. Herstellung weiterer Produkte (3) 23 3.92 Summe 575 100 Quelle:

9 SO2-Emissionen: Deutschland
SO2 – Emissionen aus Deutschland (jetzige Fläche) in kt a-1 Datenquelle:

10 Quelle: Diercke Weltatlas, 1996
Fichtelgebirge Quelle: Diercke Weltatlas, 1996

11 SO2 - Immission: Fichtelgebirge

12 Schwefeldioxid in Wasser
SO2 + H2O  SO2  H2O SO2  H2O  H+ + HSO3- HSO3-  H+ + SO32- = mol  l–1  atm–1 (298 K) =  10–2 mol  l–1 =  10–8 mol  l–1 =  10–2 mol  kg–1

13 Reaktionen des SO2 - wässrige Phase
1. Oxidation durch Wasserstoffperoxid HSO3- + H2O2  HSO4- + H2O HSO4-  SO42- + H+ 2. Oxidation durch Ozon Reaktionsrate nimmt zu mit steigendem pH 3. Oxidation durch Sauerstoff, katalysiert durch Mn(II) und Fe(III) in jedem Fall entsteht H2SO4, eine starke Säure!

14 Reaktionen des SO2 - Gasphase
SO2 + OH  HSO3 HSO3 + O2  SO3 + HO2 SO3 + H2O  H2SO4 Summe: SO2 + OH + O2 + H2O  H2SO4 + HO2 Das Verhältnis der wässrigen zur gasförmigen Oxidation des SO2 ist schwierig zu quantifizieren. Globale Abschätzungen reichen von 1:1 bis zu 1:3. Jedenfalls wird das SO2 fast vollständig als SO42- wieder aus der Atmosphäre entfernt, das meiste gelöst in Niederschlagswasser

15 „Stickoxide“ „Stickstoffmonoxid“ „Stickstoffdioxid“
NOx = NO + NO2 „Stickoxide“ „Stickstoffmonoxid“ „Stickstoffdioxid“ N2O ist kein „Stickoxid“ in diesem Sinne

16 Stickoxide - Quellen 106 t / a = Tg a-1 (als NO2) Quellen am Boden
Verbrennung fossiler Energieträger 69 Verbrennung von Biomasse 37 Emissionen aus Böden 18 Atmosphärische Quellen Gewitter 17 Flugzeugabgase 1 Input aus Stratosphäre 2 Summe 144  66

17 NOx - Emissionen in Deutschland 2004
Gt % Verbrennung fossiler Brennstoffe 1457 93 Energiewirtschaft 276 18 Verarbeitendes Gewerbe 146 9 Verkehr 847 54 davon Straßenverkehr 732 47 Übrige Feuerungsanlagen 181 12 davon Gewerbe, Handel, Dienstleistung 27 1.7 davon Haushalte 78 5.0 Militär und weitere kleine Quellen 7 0.4 Industrieprozesse 11 0.7 Landwirtschaft 101 6.4 Düngerwirtschaft 19 1.2 Landwirtschaftliche Böden 82 5.2 Summe 1569 100 Datenquelle:

18 Quelle: Helbig et al., 1999

19 Quelle: Helbig et al., 1999

20 NOx-Emissionen: Deutschland
NOx – Emissionen aus Deutschland (jetzige Fläche) in kt a-1 Datenquelle:

21 Quelle: Seinfeld und Pandis, 2006
CO Quellen (global) Tg a-1 Oxidation von CH4 800 Oxidation biogener VOC 320 Oxidation anthropogener VOC 110 Vegetation 150 Ozeane 50 Verbrennung von Biomase 700 Verbrennung fossiler Brennstoffe 650 Summe 2780 Senken (global) Deposition 9 % Reaktion mit OH 91 % Quelle: Seinfeld und Pandis, 2006

22

23

24 NOx: Wichtige Reaktionen
NO + O3  NO2 + O2 schnell NO2 + h  O(3P) + NO   400 nm; j(NO2)  9  10-3 s-1 O(3P) + O2  O3 Reaktion von allergrößter Bedeutung für troposphärische O3-Bildung NO + RO2  NO2 + RO NO + HO2  NO2 + OH

25 NOx: Wichtige Reaktionen
NO2 + OH  HNO3 bedeutende Senke für NO2 HNO3 + h  NO2 + OH langsam, deshalb ist 3. wichtig HNO3 +H2Ofl  H+ + NO3-aq. HNO3 + NH3  NH4NO3 (Aerosol)

26 Reaktive flüchtige KWs
NMKW Nicht-Methan-Kohlenwasserstoffe NMVOC Non-Methane Volatile Organic Compounds NMHC Non-Methane-Hydrocarbons VOC Volatile Organic Compounds BVOC Biogenic Volatile Organic Compounds Bedeutung in der Atmosphäre weniger durch Beteiligung am C-Haushalt als durch Auswirkungen auf den Radikalhaushalt.

27 anthropogene Quellen in Deutschland 2004
Gg % 1. Energie 339.1 27 A. Verbrennung fossiler Brennstoffe 286.83 23 1. Energiewirtschaft 8.56 0.69 2. Verarbeitendes Gewerbe 6.04 0.49 3. Verkehr 185.02 15 davon Straßenverkehr 168.56 14 4. Übrige Feuerungsanlagen 84.24 6.80 davon Gewerbe, Handel, Dienstleistung 6.03 davon Haushalte 60.51 4.89 5. Militär und weitere kleine Quellen 2.98 0.24 B. Diffuse Emissionen aus Brennstoffen 52.25 4.22 1. Feste Brennstoffe 1.27 0.10 2. Öl und Gas 50.98 4.12 2. Industrieprozesse 50.61 4.09 A. Mineralische Produkte 1.56 0.13 B. Chemische Industrie 4.19 0.34 C. Herstellung von Metall 2.07 0.17 D. Herstellung weiterer Produkte (3) 42.79 3.46 3. Lösemittel und andere Produktverwendung 729.55 59 4. Landwirtschaft 119.08 10 B. Düngerwirtschaft Summe 100 anthropogene Quellen in Deutschland 2004 Datenquelle:

28 Quelle: Helbig et al., 1999

29 Reaktive flüchtige KWs
NMVOC – Emissionen aus Deutschland (jetzige Fläche) in kt a-1 Datenquelle:

30 biogene Quellen global
Emissionen aus der Vegetation (80 % Blattwerk, 15 % Stämme, Blüten etc.) und Bodenmikroorganismen (5 %) Isopren 40 % Methanol 15 % Acetaldehyde, acetone, ethene, ethanol, a-pinene: 1 to 7% each 35 % b-pinene, d-carene, hexenal, hexenol, hexenyl-acetate, propene, formaldehyde, hexanal, butanone, sabinene, limonene, methyl butenol, butene, b-carophylene, b-phellandrene, p-cymene, myrcene: 0.2 to 1% each Formic acid, acetic acid, ethane, toluene, camphene, terpinolene, a-terpinolene, a-thujene, cineole, ocimene, g-terpinene, bornyl acetate, camphor, piperitone, linalool, tricyclene: 0.04 to 0.2% each 5 % Summe: > 1.5 Gt a-1 global sind die biogenen Emissionen weitaus größer als die anthropogenen Quelle: A. Guenther, 2005

31 Reaktionen am Beispiel der Alkane
RH + •OH  •R + H2O Alkylradikal •R + O2  •RO2 Alkylperoxyradikal •RO2 + NO  •RO + NO2 Alkoxyradikale

32 Luftqualitätsindex LQI Bewertung < 0.5 sehr gut 0.5 – 1 gut 1 - 1.5
befriedigend ausreichend 2 – 2.5 schlecht > 2.5 sehr schlecht


Herunterladen ppt "Umweltmeteorologie 9. Spurengase"

Ähnliche Präsentationen


Google-Anzeigen