Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Klimawandel CO2 (ppm) WS 05/06 Joachim Curtius

Ähnliche Präsentationen


Präsentation zum Thema: "Klimawandel CO2 (ppm) WS 05/06 Joachim Curtius"—  Präsentation transkript:

1 Klimawandel CO2 (ppm) WS 05/06 Joachim Curtius
Institut für Physik der Atmosphäre Universität Mainz Login: Klimawandel Password: CO2 CO2 (ppm)

2 Nachträge: Hurrican Katrina: nur ein Hurrikan der Stufe 3... Durchschnitts-Temperaturen 2005: wärmstes oder 2.-wärmstes Jahr nach 1998, aber kein El-Nino-Jahr wie 1998!

3 Schäden durch Naturkatastrophen
Volkswirtschaftliche Schäden 2005: Mrd. US$ versicherte Schäden 2005: ~75 Mrd. US$; davon ~45 Mrd. US$ durch "Katrina" [Münchner Rückversicherung und Schweizer Rückversicherung, 2005]

4 Inhalt Überblick Grundlagen Klimawandel heute: Beobachtungen CO2
Andere Treibhausgase Aerosole und Wolken Solare Variabilität Erwarteter zukünftiger Klimawandel Klimageschichte Klimaschutz

5 CO2-Aufnahme im Ozean CO2 löst sich im Ozean (1.7 Pg C/yr),
dort zu ~91% als Bicarbonat-Ionen HCO3-, 1% CO2 und 8% Carbonat-Ionen. "Gelöster inorganischer Kohlenstoff"; Bildung von Kohlensäure: CO2 + H2O +CO32¯  2 HCO3¯ Zusätzliche CO2-Aufnahme aus der Atmosphäre führt zu Senkung der CO32—Konzentration: Steigerung des pH-Werts um bis zum Jahr d.h. [H+]-Konzentration steigt um % nach IS92a Auflösung der Kalziumkarbonat-Schalen (CaCO3) von Muscheln, Plankton und Korallen da CO32- in Untersättigung. Antarktische Südsee und arktischer Pazifik möglicherweise Aragonit-untersättigt ab Große Auswirkungen für Pteropod-Plankton [Orr et al., Nature, 2005]

6 Orr et al., Nature, 2005: Modell-Vorhersagen für Aragonit-Sättigung Auflösung von Pteropod- Schalen nach 48 hr in Aragonit-untersättigten Bedingungen

7 Inhalt Überblick Grundlagen Klimawandel heute: Beobachtungen CO2
Andere Treibhausgase Aerosole und Wolken Solare Variabilität Erwarteter zukünftiger Klimawandel Klimageschichte Klimaschutz

8 [IPCC 2001]

9 Übersicht der nicht-CO2 Treibhausgase
[IPCC 2001]

10 Spektrale Verteilung der Abstrahlung von Sonne und Erde im Vergleich
mit Planck-Strahler Sonne: Oberfläche ~5776°C Strahlung maximal im sichtbaren Bereich (0.4 – 0.8 µm) terrestrisches Strahlungs- fenster 8-12 µm

11 GWP "Greenhouse Warming Potential":
berechnet für ein Gas (x) auf Basis der IR-Absorption der Moleküle und der atmosphärischen Abbauzeitskalen ("life time") die Wirksamkeit als Treibhausgas: Referenzgas (r) ist CO2. (  120 Jahre). Es muss immer der Zeithorizont (TH) berücksichtigt werden. Angegeben werden meist GWPs für Zeithorizonte von 20, 100 und 500 Jahren. ax ist die "radiation efficiency", [x(t)] ist der zeitliche Verlauf der Gas-Konzentration.

12 zeitliche Entwicklung und Trend 1983-2000
Methan: zeitliche Entwicklung und Trend [IPCC 2001]

13 Quellen und Senken von Methan (Tg CH4/yr)
inkl. ~ Tg/yr aus Reisfeldern Erdgas, Öl- und Kohle- förderung Wiederkäuer gesamt: ~70% anthropogene Quellen [IPCC 2001]

14 Methan: langlebiges, gut-durchmischtes Gas, Konzentration ~1750 ppbv Abbauzeit: 8.4 Jahre Abbau vor allem (>85%) durch OH-Reaktion: CH4 + OH  CH3 + H2O Rückkopplung: CH4 "verbraucht" das OH, daher: je höher die CH4–Konzentration, desto weniger OH (+1% CH4 entspricht –0.32% OH): Dies verlängert den CH4-Abbau um einen Faktor 1.4 geschätzter Klimaantrieb durch anthropogen verursachtes Methan: 0.48 W m-2

15 Methan: zeitliche Entwicklung der letzten 1000 Jahre
[IPCC 2001]

16 Methan: zeitliche Entwicklung der letzten 650 000 Jahre
[Spahni et al., Science, 2005] ähnlich wie bei CO2 waren die Konzentrationen von CH4 und auch N2O in den letzten Jahren nie so hoch wie heute.

17 Methan: zukünftige Entwicklung sehr stark Szenario-abhängig
[IPCC 2001]

18 Erwartete Änderung der Methan-Abbauzeiten wegen OH-Rückkopplung:
[IPCC 2001]

19 Methanverluste in russischen Öl-Pipelines?
Lelieveld et al., Nature, 2005: CH4-Flußmessungen mit Hubschrauber... Verluste sind klein:~1.4% daher "lohnt" Umstieg von Kohle und Öl auf Erdgas als Energiequelle, denn nicht nur weniger CO2 pro kWh, sondern auch weniger Strahlungsantrieb insgesamt, trotz großen GWPs von CH4

20 Übersicht der nicht-CO2 Treibhausgase
[IPCC 2001]

21 N2O: Quellen und Senken (Tg N/yr)
gesamt: ~ 60% anthropogene Quellen, hauptsächlich durch Düngerproduktion und als Abbauprodukt von Stickstoff-Dünger [IPCC 2001]

22 [IPCC 2001]

23 N2O: zukünftige Entwicklung ebenfalls stark Szenario-abhängig
[IPCC 2001]

24 Übersicht der nicht-CO2 Treibhausgase
[IPCC 2001]

25 zeitliche Entwicklung seit 1975. Nach Montreal-Abkommen
Halogenierte Kohlenwasserstoffe: zeitliche Entwicklung seit 1975. Nach Montreal-Abkommen haben bestimmte Ersatzstoffe wie z.B HFC 134a stark zugenommen. [IPCC 2001]

26 FCKWs: zeitliche Entwicklung seit 1977 Nach Montreal-Abkommen keine weitere Zunahme oder Abnahme.

27 Halogenverbindungen: Zukünftige Entwicklung
[IPCC 2001]

28 Troposphärisches Ozon:
sehr variabel, Mittelwerte und Trends schwierig Chemie stark beeinflusst durch NOx, CO, CH4 und VOCs, UV-Licht, etc. daher gelten diese Gase als "indirekte" Treibhausgase, Die "Vorläufer-Substanzen" haben starke anthropogene Quellen ("Smog"), Beispiel NOx-katalysierte CO-Oxidation. bodennahes Ozon rückläufig in Europa und Nord-Amerika, zunehmend in Südost-Asien und im Nahen Osten Nicht nur Treibhausgas, sondern auch wegen der Auswirkungen auf Gesundheit und landwirtschaftliche Erträge wichtig

29 Ozontrend in mittleren Breiten der Nördlichen Hemisphäre
[IPCC 2001]

30 zukünftige Entwicklung troposphärisches Ozon
[IPCC 2001]

31 Klimaantrieb 1750-2000 in W/m2 a) durch langlebige Treibhausgase CO2,
CH4, N2O, Halogen-KWs c) durch Ozon [IPCC 2001]

32 Methan-Abbau in der Atmosphäre [Lelieveld et al., Tellus B, 1998]


Herunterladen ppt "Klimawandel CO2 (ppm) WS 05/06 Joachim Curtius"

Ähnliche Präsentationen


Google-Anzeigen