Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Wahrscheinlichkeitstheorie. Literatur Hans Irtel Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Frankfurt am Main: Verlag.

Ähnliche Präsentationen


Präsentation zum Thema: "Wahrscheinlichkeitstheorie. Literatur Hans Irtel Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Frankfurt am Main: Verlag."—  Präsentation transkript:

1 Wahrscheinlichkeitstheorie

2 Literatur Hans Irtel Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Frankfurt am Main: Verlag Peter Lang, 1996 (ISBN ) im Web als PDF

3 Gliederung Mengenlehre Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeiten Zufallsvariablen Kombinatorik Wahrscheinlichkeitsverteilungen

4 Warum brauchen wir die Wahrscheinlichkeitstheorie? Psychologische Daten unterliegen vielen Einflußgrößen, viele davon sind nicht kontrollierbar. Eine Wiederholung einer Erhebung liefert nicht mit Sicherheit das gleiche Ergebnis. Bei einem guten Test reproduzibel: Statistische Daten (Mittelwerte, Streuungen)

5 Warum brauchen wir die Mengenlehre? Wahrscheinlichkeitsberechnungen beruhen auf dem Vergleich der Mächtigkeit von Mengen.

6 Mengenlehre I Naive Mengenlehre (Cantor) –Eine Menge ist eine Zusammenfassung von bestimmten wohl unterschiedenen Objekten (Elementen) –Schreibweisen: M = {a,b,c...}, M={x N|x>7}, –Teilmenge: A B (x A x B), B A –Vereinigungsmenge:A B = {x|x A x B} –Schnittmenge: A B = {x|x A x B} –Komplement, Differenz:A = \ A {x|x x A} –Kommutativität, Assoziativität, Distributivität –De Morgan: A B = A B, A B = A B –A sei eine Menge. Potenzmenge: Menge aller Teilmengen X={x|x A} –Menge aller Mengen –Menge aller Mengen die sich nicht selbst enthalten (Russell) –Russell: Typentheorie. Zermelo-Fraenkel-Mengenlehre. Gödel.

7 Mengenlehre II kartesisches Produkt: A B = {(a,b)|a A b B} A B C, A A A = A 3 binäre Relation: R A B. Statt (a,b) R schreibe aRb. Beispiel: K = {(a,b)|(a,b) N N a

8 Mengenlehre III Zerlegung:Sei A eine Menge, und ~ eine Äquivalenzrelation auf A. Dann heißt die Menge A/~ aller Äquivalenzklassen von A bzgl. ~ die von ~ induzierte Zerlegung. –K,L A/~ K L K L= –Vereinigungsmenge aller Elemente von A/~ –Definition von ~ über eine Zerlegung –Zerlegung eines Hypothesenraums für die Hypothesenprüfung nach Bayes

9 Mengelehre IV Eine binäre Relation f auf A B heißt eine Abbildung, wenn gilt –f ist linkstotal: a A b B sodaß (a,b) f. –f ist rechtseindeutig: (a,b) f (a,c) f b=c –A: Definitionsbereich, B: Wertebereich von f. –alternativer Name: Funktion. –Schreibweisen: (a,b) f, afb, b=f(a), f: A B, –M A, N B : f(M)=N heißt Bild von M, f –1 (N)=M Urbild von N –surjektiv: b B a A sodaß (a,b) f. rechtstotal. bitotal. –injektiv:(a,c) f (b,c) f a=b. linkseindeutig. eineindeutig. –bijektiv:surjektiv und injektiv. –Sei f bijektiv. Dann ist auch die Umkehrabbildung f –1 bijektiv. –endlich, unendlich; abzählbar, überabzählbar

10 Mengenlehre und Logik Verwandtschaft von Mengenlehre und Logik – A –Hausaufgaben (unter anderem): überprüfen, welche Gesetze der Mengelehre genauso in der Logik gelten. vertraut machen mit Wahrheitstafeln!,,,,

11 Zufallsexperimente Ergebnis nicht mit Sicherheit vorhersagbar, Menge aller möglichen Ergebnisse bekannt. Ergebnisraum = { 1, 2, 3,...} –Beispiel: Detektionsexperiment Ergebnisraum: = {+, } –Beispiel: Stellung von Ehepaaren zu Geschwindigkeitsbegrenzung auf Autobahnen Ergebnisraum: = {0,1,2} (Zahl der Ja-Antworten) Ergebnisraum: = {(J,J),(J,N),(N,J),(N,N)} –Ergebnisraum hängt von der Struktur des Experimentes und von der Fragestellung ab

12 Ereignisse Teilmenge A des Ergebnisraums ist ein Ereignis. –Ergebnis i (direkt) beobachtbar: Ausgang des Experiments –Ereignis = wahrscheinlichkeitstheoretisches Konzept: Ereignis tritt ein / wird (indirekt) beobachtet = Ergebnis Ereignis –Beispiel: E = Ehepaar antwortet gleich = {0,1,2}: E = {0,2} = {(J,J),(J,N),(N,J),(N,N)}: E = {(J,J),(N,N)} –Elementarereignis: Ereignis mit nur einem Element, { i } –Ergebnisraum und leere Menge sind Ereignisse –Operationen auf Ereignissen: Vereinigung, Schnittmenge, Komplement

13 Wahrscheinlichkeiten von Ereignissen für endliche oder abzählbare (diskrete) Ergebnisräume: Wahrscheinlichkeit: P: Potenzmenge( ) R so daß –P({ i }) 0, –P({ 1 }) + P({ 2 }) + P({ 3 }) = 1. –P(A) = A P({ }) –keine weitere Annahmen über P({ i }), insbesondere nicht gleichwahrscheinlich Problem bei überabzählbaren Mengen

14 -Algebra Axiomatische Definition nach Kolmogorov: Sei ein Ergebnisraum, und S eine Menge von Teilmengen von, dann heißt S eine -Algebra in, wenn gilt – S –A S A S –A 1, A 2, A 3... S A 1 A 2 A 3... S S ist abgeschlossen bzgl. Komplement,, S kann abzählbar sein, auch wenn überabzählbar ist.

15 Wahrscheinlichkeitsraum Sei ein Ergebnisraum und S eine -Algebra in. Dann ist die Abbildung P: S R eine Wahrscheinlichkeit, wenn gilt: –P(A) 0 für alle A S, –P( ) = 1, – -Additivität: A 1, A 2, A 3... S, paarweise disjunkt P(A 1 A 2 A 3...) = P(A 1 ) + P(A 2 ) + P(A 3 ) +... Übungen:, P(A), A B

16 Bedingte Wahrscheinlichkeit Seien A und B Ereignisse, mit P(B)>0. Dann wird die bedingte Wahrscheinlichkeit, daß A eintritt gegeben B, definiert als: P(A|B) P(A B)/P(B) Beispiel: ein Säckchen enthalte weiße und schwarze Spielsteine aus Holz und aus Plastik: 40 weiße aus Holz, 10 weiße aus Plastik, 30 schwarze aus Holz, 20 schwarze aus Plastik. Ich ziehe einen Stein. Wie groß ist P(w|H), p(H|w), p(H), p(w),... P(A B) = P(A|B) P(B) = P(B|A) P(A)

17 Stochastische Unabhängigkeit A und B sind stochastisch unabhängig, wenn gilt: P(A|B) = P(A) Fragen: P(B|A) = ? P(A B) = ? P(A|B) = ? Beispiel: A tritt nach B ein. A ist unabhängig von B, wenn das erste Teilergebnis (aus B oder aus B) keinen Einfluß auf die Wahrscheinlichkeit für das Auftreten von A hat. Zwei Ereignisse seien disjunkt. Beide haben eine Wahrscheinlichkeit größer Null. Können sie unabhängig sein?

18 Unabhängige Familien Sei C eine Menge von Ereignissen. C heißt Familie unabhängiger Ereignisse, wenn für alle endlichen Teilmengen von C gilt: P(A 1 A 2 A 3...) = P(A 1 ) P(A 2 ) P(A 3 )... Reicht paarweise Unabhängigkeit aller Elemente für die Unabhängigkeit der Familie?

19 Bayes Sei {B 1, B 2,...} eine Zerlegung von. (paarweise disjunkt, Vereinigung aller B i = ). Dann gilt: Beispiel: B i (unbeobachtbare) Hypothesen, A (beobachtbare) Versuchsergebnisse, P(A|B i ) bekannt (Voraussagen), P(B i ) a priori Wahrscheinlichkeiten für Hypothesen, P(B i |A) a posteriori Wahrscheinlichkeiten der Hypothesen.

20 Beispiel: Entscheidungstheorie Jeder Stimulus löst eine interne Repräsentation aus, die sich durch einen eindimensionalen Parameter e beschreiben läßt. e ist Gauß-verteilt, mit = 1 und µ = 0 (Rauschen) bzw. µ = d (Signal). Bei Ja/Nein-Aufgaben setzt die VP ein Kriterium k und sagt Ja wenn e > k. JaNein d 0 02ek P (S | e) ist eine monotone Funktion von e: Ein Kriterium in e ist gleichzeitig ein Kriterium in P (S | e).

21 Bedingte Unabhängigkeit Sei ein Ergebnisraum, S eine -Algebra in, P eine Wahrscheinlichkeit auf S, und C ein Ereignis. Dann ist auch P C : S R mit P C (A) = P(A|C) eine Wahrscheinlichkeit auf S. Zwei Ereignisse A und B heißen bedingt unabhängig bezüglich C, wenn sie bezüglich P C unabhängig sind: P C (A|B) = P C (A). P C (A B) = P C (A) P C (B) P(A B|C) = P(A|C) P(B|C)

22 Zufallsvariablen Warum brauchen wir Zufallsvariablen? –Mit Mengen kann man nicht rechnen (+,,...). –Abbildung von auf R bzw. R = R {, } reelle Zufallsvariablen –Abbildung von auf abzählbare Menge bzw. N diskrete Zufallsvariablen

23 Reelle Zufallsvariablen Sei ein Ergebnisraum, S eine -Algebra in, P eine Wahrscheinlichkeit auf S. X: (R bzw.) R heißt (reelle) Zufallsvariable genau dann wenn x R: { |X( ) x} S S = {, }, X ? Das Urbild jedes Intervalls (,x] ist ein Ereignis. (S-Meßbarkeit von X). –Dies ermöglicht die Übertragung der Wahrscheinlichkeit P von der -Algebra S auf den Wertebereich von X.

24 Verteilungsfunktion Definition der Verteilungsfunktion F(x) = P({ |X( ) x}) = P(X x) –monoton steigend (warum?) –F( ), F(+ ) Gibt es für die reelle Zufallsvariable X: R eine nichtnegative Funktion f: R R mit F(x) = x f(y) dy, dann ist f die Wahrscheinlichkeitsdichte von X. –P(a x b) = a b f(y) dy – f(y) dy = ???

25 Diskrete Zufallsvariablen Sei ein Ergebnisraum, S eine -Algebra in, P eine Wahrscheinlichkeit auf S. X: E (E abzählbar) heißt diskretes Zufallselement. Zusätzlich E R: X ist diskrete Zufallsvariable. Definition der Wahrscheinlichkeitsfunktion p(x) = P({ |X( )=x}) = P(X=x) B E: P(B) = x B p(x). Zufallsvariable X: Verteilungsfunktion F(x) = P(X x) = y x p(y). A S: Indikatorfunktion 1 A ( ) = 1 wenn A, 0 sonst.

26 Unabhängige Zufallsvariablen Reelle Zufallsvariablen X 1, X 2,... sind stochastisch unabhängig, wenn für alle x 1, x 2,... R gilt: P(X 1 x 1, X 2 x 2,...) = P(X 1 x 1 ) P(X 2 x 2 )... Wenn alle X i Dichten besitzen, gilt F(x 1,x 2,...) = x1 f 1 (y 1 ) dy 1 x2 f 2 (y 2 ) dy 2... = x1 x2... f 1 (y 1 ) f 2 (y 2 ) dy 1 dy 2... Wahrscheinlichkeitsdichte f(x 1,x 2,...) = f 1 (x 1 ) f 2 (x 2 )...

27 Zufallsstichprobe Folge von Zufallsexperimenten in einer Population –Jedes Element der Population hat die gleiche Wahrscheinlichkeit, beobachtet zu werden. –einzelne Beobachtung: Ergebnis und X( ) registrieren. –Die einzelnen Beobachtungen müssen stochastisch unabhängig sein. Folge X i stochastisch unabhängiger und identisch verteilter (P(X i x)=F(x)) Zufallsvariablen.

28 Modus, Median, Quantile Sei X eine reelle Zufallsvariable mit Verteilungsfunktion F(x) und Wahrscheinlichkeitsdichte f(x). –Modus: f(x m ) hat ein (lokales?) Maximum – -Quantil: F(x ) = –Median: 0,5-Quantil Sei X eine diskrete Zufallsvariable mit Wahrscheinlichkeitsfunktion p(x) und Verteilungsfunktion F(x). –Modus: p(x m ) ist maximal – -Quantil: P(X x ) P(X x ) 1–

29 Erwartungswert, Varianz Sei X eine reelle Zufallsvariable mit Wahrscheinlichkeitsdichte f(x). –Erwartungswert: E (X) = x f(x) dx –Varianz: V(X) = ²(X) = E ( (X– E (X))² ) = E (X²) – E (X)² –Standardabweichung (X) (positive Wurzel von V(X)) Sei X eine diskrete Zufallsvariable mit Wahrscheinlichkeitsfunktion p(x). –Erwartungswert: E (X) = x X( ) x p(x) –Varianz und Standardabweichung wie oben

30 Rechenregeln mit E und V Zufallsvariable a sei konstant: E (a) = a. E ist linear: E (aX + bY) = a E (X) + b E (Y) Zufallsvariable a sei konstant: V(a) = 0. V(X+a) = V(X) V(aX) = a²V(X)

31 Vorhersage Seien X und Y zwei Zufallsvariablen. Wie genau erlaubt die Kenntnis von X, den Wert von Y vorherzusagen, und welcher Wert wäre das? Vorhergesagter Wert Y' = F (X) Vereinfachung: Existiert ein linearer Zusammenhang? Y' = a + b X Y' = a + b X + e

32 Linearität Fast jeder Zusammenhang ist –lokal linear –global nichtlinear

33 Das lineare Modell Y' = a + b X Y' = a + b X + e e = Y – Y' E (e) = 0 Ziel: E (e²) minimieren E (Y) = a + b E (X) Achsabschnitt a = E (Y) – b E (X) Steigung b = ??? Y X Y' = a + b X eiei

34 Varianz und Kovarianz V(X) = V XX = E ( (X– E (X))² ) V(Y) = V YY = E ( (Y– E (Y))² ) V(X,Y) = V XY = E ( (X– E (X))(Y– E (Y)) ) V YX = V XY = E (X·Y) – E (X) E (Y) V xy ist positiv, wenn positive Abweichungen in X mit positiven Abweichungen in Y einhergehen, und negative mit negativen. V xy ist negativ, wenn... V xy ist Null, wenn...

35 z-transformierte Zufallsvariablen Y = a + b X + e E (Y) = a + b E (X) Wenn X und Y z-transformiert sind, wenn also gilt: E (X) = E (Y) = 0 und V XX = V YY = 1, dann gilt für die Regressionsgerade: Achsabschnitt a = 0 und Steigung b = V XY = E (X·Y)

36 Vertauschung von X und Y Wenn man bei z-transformierten Zufallsvariablen X und Y vertauscht, bleibt die Steigung der Regressionsgerade gleich... Y X Y' = b X eiei Y X X' = (1/b) Y eiei X' = b Y Koordinaten- ursprung

37 Korrelationskoeffizient und Steigung Steigung b Y·X = V XY / V XX Steigung b X·Y = V XY / V YY 1 / b Y·X = V XX / V XY r XY = V XY / (V XX V YY ) b Y·X = r XY (V YY /V XX ) = r XY S Y /S X b X·Y = r XY (V XX /V YY ) = r XY S X /S Y r XY ² = V XY ² / (V XX V YY ) E (e²) = V YY ( 1 – r XY ² ) = ( 1 – r XY ² ) für z-transformierte Daten

38 Rechenregeln mit Kovarianz V(aX + bY) = a²V XX + b²V YY + 2abV XY V( i=1...n X i ) = i=1...n j=1...n V XiXj V X+Y,Z = V XZ + V YZ Sind X und Y stochastisch unabhängig, dann gilt – E (X·Y) = E (X) E (Y) –V XY = 0 –Z=X+Y: V ZZ = V X + V Y –Z=X–Y: V ZZ =


Herunterladen ppt "Wahrscheinlichkeitstheorie. Literatur Hans Irtel Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Frankfurt am Main: Verlag."

Ähnliche Präsentationen


Google-Anzeigen