Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel.

Kopien: 3
Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel.

Dunkle Energie – Ein kosmisches Raetsel Welch Dunkle Energie dominiert das Universum ?

Dunkle Energie - ein kosmisches Rätsel. Quintessenz C.Wetterich A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes,R.Caldwell,

Ähnliche Präsentationen


Präsentation zum Thema: "Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel."—  Präsentation transkript:

1 Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel

2 Dunkle Energie – ein kosmisches Rätsel C.Wetterich A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes, R.Caldwell, M.Bartelmann, K.Karwan,G.Robbers

3 Woraus besteht unser Universum ?

4 Feuer, Luft, Wasser, Erde ! Quintessenz !

5 Zusammensetzung des Universums Ω b = 0.05 Ω b = 0.05 Ω dm = 0.2 Ω dm = 0.2 Ω h = 0.75 Ω h = 0.75

6 Kritische Dichte ρ c =3 H² M² ρ c =3 H² M² Kritische Energiedichte des Universums Kritische Energiedichte des Universums ( M : reduzierte Planck-Masse, M -2 =8 π G ; ( M : reduzierte Planck-Masse, M -2 =8 π G ; H : Hubble Parameter ) H : Hubble Parameter ) Ω b =ρ b /ρ c Ω b =ρ b /ρ c Anteil der Baryonen an der (kritischen) Energiedichte Anteil der Baryonen an der (kritischen) Energiedichte

7 ~60,000 von >300,000 Galaxien Baryonen/Atome Staub Staub Ω b =0.045 Ω b =0.045 Nur 5 Prozent unseres Universums Nur 5 Prozent unseres Universums bestehen aus bekannter Materie ! bestehen aus bekannter Materie ! SDSS

8 Abell 2255 Cluster ~300 Mpc

9

10 Ω b =0.045 Von Nukleosynthese, Kosmischer Hintergrundstrahlung

11 Materie : Alles, was klumpt

12 Dunkle Materie Ω m = 0.25 Materie insgesamt Ω m = 0.25 Materie insgesamt Die meiste Materie ist dunkel ! Die meiste Materie ist dunkel ! Bisher nur durch Gravitation spürbar Bisher nur durch Gravitation spürbar Alles was klumpt! Gravitationspotential Alles was klumpt! Gravitationspotential

13 Gravitationslinse,HST

14 Lichtstrahlen werden durch Massen abgelenkt

15 Gravitationslinse,HST

16 Dunkle + baryonische Materie : Alles was klumpt ! Ω m = 0.25

17 Räumlich flaches Universum Theorie (Inflationäres Universum ) Theorie (Inflationäres Universum ) Ω tot =1.0000……….x Ω tot =1.0000……….x Beobachtung ( WMAP ) Beobachtung ( WMAP ) Ω tot =1.02 (0.02) Ω tot =1.02 (0.02) Ω tot = 1

18 Foto des Urknalls

19

20 NASA/GSFC Chuck Bennett (PI) Michael Greason Bob Hill Gary Hinshaw Al Kogut Michele Limon Nils Odegard Janet Weiland Ed Wollack Princeton Chris Barnes Norm Jarosik Eiichiro Komatsu Michael Nolta UBC Mark Halpern Chicago Stephan Meyer Brown Greg Tucker UCLA Ned Wright Science Team: Wilkinson Microwave Anisotropy Probe A partnership between NASA/GSFC and Princeton Lyman Page Hiranya Peiris David Spergel Licia Verde

21 Mittelwerte WMAP 2003 Ω tot =1.02 Ω m =0.27 Ω b =0.045 Ω dm =0.225

22 Ω tot =1

23 WMAP 2006 Polarisation

24 Dunkle Energie Ω m + X = 1 Ω m + X = 1 Ω m : 25% Ω m : 25% Ω h : 75% Dunkle Energie Ω h : 75% Dunkle Energie h : homogen, oft auch Ω Λ statt Ω h

25 Dunkle Energie : homogen verteilt

26 Vorhersagen für Kosmologie mit Dunkler Energie Die Expansion des Universums beschleunigt sich heute !

27 Zeit Perlmutter 2003 Abstand

28 Supernova Ia Hubble-Diagramm Riess et al Rotverschiebung z

29 Fluktuations-Spektrum Baryon - Peak SDSS Galaxien – Korrelations – Funktion Strukturbildung : Ein primordiales Fluktuations-Spektrum

30 Strukturbildung Aus winzigen Anisotropien wachsen die Strukturen des Universums Sterne, Galaxien, Galaxienhaufen Ein primordiales Fluktuationsspektrum beschreibt alle Korrelatonsfunktionen !

31 Strukturbildung : Ein primordiales Fluktuationsspektrum Waerbeke CMB passt mit Galaxienverteilung Lyman – α und Gravitationslinsen- Effekt !

32 Baryon - Peak SDSS Galaxien – Korrelations – Funktion

33 Konsistentes kosmologisches Modell !

34 Zusammensetzung des Universums Ω b = 0.05 sichtbar klumpt Ω b = 0.05 sichtbar klumpt Ω dm = 0.2 unsichtbar klumpt Ω dm = 0.2 unsichtbar klumpt Ω h = 0.75 unsichtbar homogen Ω h = 0.75 unsichtbar homogen

35 Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel

36 Was ist die dunkle Energie ? Kosmologische Konstante oder Quintessenz ?

37 Kosmologische Konstante Konstante λ verträglich mit allen Symmetrien Konstante λ verträglich mit allen Symmetrien Zeitlich konstanter Beitrag zur Energiedichte Zeitlich konstanter Beitrag zur Energiedichte Warum so klein ? λ/M 4 = Warum so klein ? λ/M 4 = Warum gerade heute wichtig? Warum gerade heute wichtig?

38 Kosm. Konst. | Quintessenz statisch | dynamisch

39 Kosmologische Massenskalen Energie - Dichte Energie - Dichte ρ ~ ( 2.4×10 -3 eV ) - 4 ρ ~ ( 2.4×10 -3 eV ) - 4 Reduzierte Planck Masse M=2.44×10 18 GeV Newtons Konstante G N =(8πM²) Nur Verhältnisse von Massenskalen sind beobachtbar ! homogene dunkle Energie: ρ h /M 4 = ˉ¹²¹ homogene dunkle Energie: ρ h /M 4 = ˉ¹²¹ Materie: ρ m /M= ˉ¹²¹ Materie: ρ m /M 4 = ˉ¹²¹

40 Zeitentwicklung ρ m /M 4 ~ aˉ ³ ~ ρ m /M 4 ~ aˉ ³ ~ ρ r /M 4 ~ aˉ 4 ~ t -2 ρ r /M 4 ~ aˉ 4 ~ t -2 Strahlungsdominiertes Universum Grosses Alter kleine Grössen Grosses Alter kleine Grössen Gleiche Erklärung für dunkle Energie ? Gleiche Erklärung für dunkle Energie ? tˉ ² Materie dominiertes Universum tˉ 3/2 Strahlungsdominiertes Universum

41 Quintessenz Dynamische dunkle Energie, Dynamische dunkle Energie, vermittelt durch Skalarfeld vermittelt durch Skalarfeld (Kosmon) (Kosmon) Vorhersage : Ein Teil der Energie- dichte des heutigen Universums liegt als homogen verteilte ( dunkle) Energie vor. C.Wetterich,Nucl.Phys.B302(1988) B.Ratra,P.J.E.Peebles,ApJ.Lett.325(1988)L17,

42 Skalarfeld Φ (x,y,z,t) Φ (x,y,z,t) Ähnlich wie elektrisches Feld Ähnlich wie elektrisches Feld Aber : keine Richtung ist ausgezeichnet Aber : keine Richtung ist ausgezeichnet (kein Vektor ) (kein Vektor )

43 Kosmon Skalarfeld ändert seinen Wert auch in der heutigen kosmologischen Entwicklung Skalarfeld ändert seinen Wert auch in der heutigen kosmologischen Entwicklung Potenzielle und kinetische Energie des Kosmons tragen zur Energiedichte des Universums bei Potenzielle und kinetische Energie des Kosmons tragen zur Energiedichte des Universums bei Zeitabhängige dunkle Energie : Zeitabhängige dunkle Energie : ρ h (t) fällt mit der Zeit ! ρ h (t) fällt mit der Zeit !

44 Kosmon Winzige Masse Winzige Masse m c ~ H m c ~ H Neue langreichweitige Wechselwirkung Neue langreichweitige Wechselwirkung

45 Fundamentale Wechselwirkungen Starke,elektromagnetische,schwache Wechselwirkung GravitationKosmodynamik Auf astronomischen Skalen: Graviton + Kosmon

46 Homogenes und isotropes Universum φ(x,t)=φ(t) φ(x,t)=φ(t) Homogenes Kosmonfeld Homogenes Kosmonfeld Homogener Beitrag zur Energiedichte Homogener Beitrag zur Energiedichte Dynamische Dunkle Energie ! Dynamische Dunkle Energie !

47 Evolution des Kosmonfelds Feldgleichung Feldgleichung Potenzial V(φ) bestimmt Details des Modells Potenzial V(φ) bestimmt Details des Modells z.B. V(φ) =M 4 exp( - φ/M ) z.B. V(φ) =M 4 exp( - φ/M ) Für wachsendes φ fällt Potenzial gegen Null Für wachsendes φ fällt Potenzial gegen Null

48 Kosmologische Gleichungen

49 Details der Modelle hängen von Potenzial V(φ) ab

50 Quintessenz wird heute wichtig

51 Zustandsgleichung p=T-V Druck kinetische Energie p=T-V Druck kinetische Energie ρ=T+V Energiedichte ρ=T+V Energiedichte Zustandsgleichung Zustandsgleichung hängt von spezifischer Evolution des Skalarfelds ab

52 Negativer Druck w < 0 Ω h wächst w < 0 Ω h wächst w < -1/3 Expansion des Universums ist w < -1/3 Expansion des Universums ist beschleunigt beschleunigt w = -1 Kosmologische Konstante w = -1 Kosmologische Konstante

53 Negativer Druck

54 Wie kann man Quintessenz von kosmologischer Konstanten unterscheiden ?

55 Zeitabhängigkeit der dunklen Energie Kosmologische Konstante : Ω h ~ t² ~ (1+z) -3 M.Doran,… w=p/ρ

56 Dunkle Energie im frühen Universum : unter 10 %

57 Zunehmende Wichtigkeit der Dunklen Energie Vorhersage: Die Expansion des Universums beschleunigt sich heute ! w h < - 1/3

58 Effekte früher dunkler Energie Strukturwachstum wird verlangsamt

59 Grenzen für frühe dunkle Energie nach WMAP06 G.Robbers,M.Doran,…

60 Interpolation von Ω h

61 Wie unterscheidet man Q von Λ ? A) Messung Ω h (z) H(z) Ω h (z) zur Zeit der Ω h (z) zur Zeit der Strukturbildung, CMB - Emission Strukturbildung, CMB - Emission oder Nukleosynthese oder Nukleosynthese B) Zeitvariation der fundamentalen Konstanten

62 Quintessenz und Zeitabhängigkeit fundamentaler Konstanten C.Wetterich, Nucl.Phys.B302,645(1988)

63 Sind fundamentale Konstanten zeitabhängig ? Feinstrukturkonstante α (elektrische Ladung) Verhältnis Neutron-Masse zu Proton-Masse Verhältnis Nukleon-Masse zu Planck-Masse

64 Quintessenz und Zeitabhängigkeit der fundamentalen Konstanten Feinstrukturkonstante hängt vom Wert des Feinstrukturkonstante hängt vom Wert des Kosmon Felds ab: α(φ) Kosmon Felds ab: α(φ) ähnlich Higgsfeld in schwacher Wechselwirkung ähnlich Higgsfeld in schwacher Wechselwirkung Zeitentwicklung von φ Zeitentwicklung von φ Zeitentwicklung von α Zeitentwicklung von α Jordan Jordan

65 A.Coc Primordiale Häufigkeiten der leichten Elemente aus der Nukleosynthese

66 4 He : typische mögliche Werte der Variation der Feinstrukturkonstanten: Δα/α ( z=10 10 ) = GUT 1 Δα/α ( z=10 10 ) = GUT 2 C.Mueller,G.Schaefer,…

67 Variation der Li- Häufigkeit T.Dent,S.Stern,… gegenwärtige Beobachtungen: 1σ He D Li

68 drei GUT Modelle Vereinheitlichungs-Skala ~ Planck Masse Vereinheitlichungs-Skala ~ Planck Masse 1) Alle Massen der Teilchenphysik ~Λ QCD 1) Alle Massen der Teilchenphysik ~Λ QCD 2) Fermi Skala und Fermion-Massen ~ Vereinheitlichungs-Skala 2) Fermi Skala und Fermion-Massen ~ Vereinheitlichungs-Skala 3) Fermi Skala ändert sich schneller als Λ QCD 3) Fermi Skala ändert sich schneller als Λ QCD Δα/α erlaubt für GUT 1 und 3, grösser für GUT 2 Δln(M n /M P ) 40 Δα/α erlaubt

69 Zeitvariation der Kopplungskonstanten ist winzig – wäre aber von grosser Bedeutung ! Mögliches Signal für Quintessenz

70 Zusammenfassung o Ω h = 0.75 o Q/Λ : dynamische und statische dunkle Energie unterscheidbar dunkle Energie unterscheidbar o Q : zeitlich veränderliche fundamentale Kopplungen, fundamentale Kopplungen, Verletzung des Äquivalenzprinzips Verletzung des Äquivalenzprinzips

71 ???????????????????????? Warum wird Quintessenz gerade in der heutigen kosmologischen Epoche wichtig ? Haben dunkle Energie und dunkle Materie etwas miteinander zu tun ? Kann Quintessenz in einer fundamentalen vereinheitlichten Theorie erklärt werden ?

72

73 Quintessenz sollte mit Lösung des Problems der kosmologischen Konstante verknüpft sein !

74 Kosmon und Fundamentale Massen - Skalen Annahme : Alle Parameter mit Dimension Masse sind proportional zu Skalar - Feld χ (GUTs, Superstrings,…) Annahme : Alle Parameter mit Dimension Masse sind proportional zu Skalar - Feld χ (GUTs, Superstrings,…) M p ~ χ, m proton ~ χ, Λ QCD ~ χ, M W ~ χ M p ~ χ, m proton ~ χ, Λ QCD ~ χ, M W ~ χ χ kann sich mit der Zeit ändern χ kann sich mit der Zeit ändern m proton /M : ( fast ) konstant - Beobachtung ! m proton /M : ( fast ) konstant - Beobachtung ! Nur Verhältnisse von Massenskalen sind beobachtbar ! Nur Verhältnisse von Massenskalen sind beobachtbar !

75 Dilatations – symmetrische Gravitationstheorie Lagrange Dichte: Lagrange Dichte: Dilatations - Symmetrie für Dilatations - Symmetrie für Konforme Symmetrie für δ=0 Konforme Symmetrie für δ=0

76 Dilatations Anomalie V~χ 4-A, M p (χ )~ χ V~χ 4-A, M p (χ )~ χ V/M p 4 ~ χ -A : V/M p 4 ~ χ -A : fällt für wachsendes χ !! fällt für wachsendes χ !!

77 Kosmologie Kosmologie : χ wächst mit der Zeit ! ( Grund: Kopplung von χ zum gravitationellen Krümmungs - Skalar ) Für wachsendes χ : Das Verhältnis V/M 4 tendiert zu Null ! Effektive kosmologische Konstante verschwindet asymptotisch für große t !

78 Weyl Reskalierung Weyl Reskalierung : g μν (M/χ) 2 g μν, φ/M = ln (χ 4 /V(χ)) φ/M = ln (χ 4 /V(χ)) Exponentielles Potenzial : V = M 4 exp(-φ/M) Keine zusätzliche Konstante ! Keine zusätzliche Konstante !

79 ???????????????????????? Warum wird Quintessenz gerade in der heutigen kosmologischen Epoche wichtig ? Haben dunkle Energie und dunkle Materie etwas miteinander zu tun ? Kann Quintessenz in einer fundamentalen vereinheitlichten Theorie erklärt werden ?

80 Die Antwort der Künstlerin … Laura Pesce

81 Ende

82 Dilatations Anomalie Quanten - Fluktuationen führen zu Quanten - Fluktuationen führen zu Dilatations - Anomalie Dilatations - Anomalie Laufende Kopplungen : Hypothese Laufende Kopplungen : Hypothese Renormierungs-Skala μ : (Impuls-Skala ) Renormierungs-Skala μ : (Impuls-Skala ) λ~(χ/μ) -A λ~(χ/μ) -A

83 Grundlage für Kosmologie Graviton + Kosmon

84 Kosmodynamik Kosmon vermittelt neue langreichweitige Wechselwirkung Reichweite : Grösse des Universums – Horizont Reichweite : Grösse des Universums – Horizont Stärke : schwächer als Gravitation Stärke : schwächer als Gravitation Photon Elektrodynamik Photon Elektrodynamik Graviton Gravitation Graviton Gravitation Kosmon Kosmodynamik Kosmon Kosmodynamik Kleine Korrekturen zum Gravitationsgesetz

85 Verletzung des Äquivalenzprinzips Verschiedene Kopplung des Kosmons an Proton und Neutron Differentielle Beschleunigung Scheinbare Verletzung des Äquivalenzprinzips Erde p,n Kosmon

86 Differentielle Beschleunigung η Für vereinheitlichte Theorien ( GUT ) : Q : Zeitabhängigkeit anderer Parameter

87 Verknüpfung zwischen Zeitabhängigkeit von α und Verletzung des Äquivalenzprinzips differentielle Beschleunigung η typisch : η = MICROSCOPE – Satteliten-Mission

88 Akustischer Peak in Galaxien - Korrelationsfunktion Geometrischer Test für Dunkle Energie Geometrischer Test für Dunkle Energie Bei Aussenden der Hintergrundstrahlung : Bei Aussenden der Hintergrundstrahlung : Baryonen und Photonen sind gekoppelt Baryonen und Photonen sind gekoppelt Lineare Störungstheorie : Akustischer Peak bleibt im Spektrum der Baryon – Fluktuationen Lineare Störungstheorie : Akustischer Peak bleibt im Spektrum der Baryon – Fluktuationen Lage des Peaks : Test für Verhältnis der Skalen bei z =0.35 und z=1089 Lage des Peaks : Test für Verhältnis der Skalen bei z =0.35 und z=1089 Konsistent mit Dunkler Energie : Ω m =0.27(3) Konsistent mit Dunkler Energie : Ω m =0.27(3)

89 coincidence problem What is responsible for increase of Ω h for z < 10 ?

90 a) Properties of cosmon potential or kinetic term Early quintessence Ω h changes only modestly Ω h changes only modestly w changes in time w changes in timetransition special feature in cosmon potential or kinetic term becomes important now special feature in cosmon potential or kinetic term becomes important now tuning at level tuning at level Late quintessence w close to -1 Ω h negligible in early cosmology needs tiny parameter, similar to cosmological constant

91 Dynamics of quintessence Cosmon : scalar singlet field Cosmon : scalar singlet field Lagrange density L = V + ½ k(φ) Lagrange density L = V + ½ k(φ) (units: reduced Planck mass M=1) (units: reduced Planck mass M=1) Potential : V=exp[- Potential : V=exp[- Natural initial value in Planck era Natural initial value in Planck era today: =276 today: =276 k(φ) models characterized by kinetial k(φ)

92 attractor solutions Small almost constant k : Small almost constant Ω h Small almost constant Ω h This can explain tiny value of Dark Energy ! This can explain tiny value of Dark Energy ! Large k : Cosmon dominated universe ( like inflation ) Cosmon dominated universe ( like inflation )

93 Transition to cosmon dominated universe Large value k >> 1 : universe is dominated by scalar field Large value k >> 1 : universe is dominated by scalar field k increases rapidly : evolution of scalar fied essentially stops k increases rapidly : evolution of scalar fied essentially stops Realistic and natural quintessence: Realistic and natural quintessence: k changes from small to large values after structure formation k changes from small to large values after structure formation

94 b) Quintessence reacts to some special event in cosmology Onset of Onset of matter dominance matter dominance K- essence K- essence Amendariz-Picon, Mukhanov, Amendariz-Picon, Mukhanov, Steinhardt Steinhardt needs higher derivative needs higher derivative kinetic term kinetic term Appearance of non-linear structure Back-reaction effect needs coupling between Dark Matter and Dark Energy


Herunterladen ppt "Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel."

Ähnliche Präsentationen


Google-Anzeigen