Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Die Bestimmung von Radialgeschwindigkeiten

Ähnliche Präsentationen


Präsentation zum Thema: "Die Bestimmung von Radialgeschwindigkeiten"—  Präsentation transkript:

1 Die Bestimmung von Radialgeschwindigkeiten
ein Erfahrungsbericht von Roland Bücke, Hamburg Titel des Vortrags Persönliche Vorstellung

2 Die Bestimmung von Radialgeschwindigkeiten mit Dobsonteleskopen

3 Die stabile Ausführung und die Einkopplung über einen Lichtleiter sind gute Voraussetzungen für die Messung von Radialgeschwindigkeiten.

4 Dopplerverschiebung von Spektrallinien:
Was ist die Radialgeschwindigkeit ? Raumbewegung Eigenbewegung Radialgeschwindigkeit Wie wird die Radialgeschwindigkeit gemessen? Dopplerverschiebung von Spektrallinien: Δλ = λ0 vR / c Vorzüge Nachteile Die Dopplerverschiebung ist sehr klein, die erforderliche Messgenauigkeit entsprechend hoch.

5 Polaris Pulsationsveränderlicher vom Typ δ Cephei Spektralklasse F
Periode (aktuell): 3.96 Tage Amplitude (akt.): ± 0.9 km/s

6 Dopplerverschiebung der Hα-Linie, hervorgerufen durch Erdbewegung und Pulsation
(Animation durch Mouseklick starten)

7 Dopplerverschiebung der Hα-Linie, nach Abzug der Erdebwegung
Auflösung Pixel Dopplerverschiebung der Hα-Linie, nach Abzug der Erdebwegung (Animation durch Mouseklick starten).

8 Die Anwendung eines Lichtleiters ermöglicht genaue Radialgeschwindigkeitsmessungen auch mit Spektrographen geringer Auflösung.

9 Eigene praktische Erfahrungen auf dem Gebiet der Radialgeschwindigkeitsmessung
Technische Ausstattung Beobachtungstechnik Datenreduktion und Auswertung

10 Vorteile der Lichtleiteranwendung
Kein Streulicht kein nachweisbarer Einfluss von hellen künstlichen Lichtquellen und Vollmond. Himmelshintergrund wird völlig ausgeblendet Die Teleskopnachführung hat keinen Einfluss auf die Messgenauigkeit Das Teleskop dient nur „zum Sammeln von möglichst viel Licht“ Eigene Ausrüstung

11 Der Lichtleiter als Eintrittsspalt des Spektrographen:
lichtführende Faser „klassischer“ Spalt von der Nachführung unabhängige, homogene Lichtverteilung über die Faserendfläche. von der Nachführung abhängige, inhomogene Lichtverteilung im Spalt Nachführfehler haben keine Auswirkung (nur Lichtverluste) Nachführfehler haben Auswirkungen auf die Linienposition gleiche Einkopplung des Kalibrierspektrums andere Lichtverteilung des Kalibrierspektrums

12 Spektrograph hohe mechanische Stabilität, Metallausführung, feststehendes Gitter Spaltspektrograph, gegeben durch Lichtleitereinkopplung CCD-Kamera mit Zeilensensor 1 x 2048 Pixel (14 x 200µm), Eigenbau exakte Ausrichtung des Spektralfadens auf eine Pixelreihe keine Bildverarbeitung notwendig Kalibrierung mit künstlicher Lichtquelle, Neonglimmlampe feststehender Spektralbereich, auf Neonspektrum abgestimmt

13 Beobachtungstechnik 12 Aufnahmen mit jeweils 200s Belichtungszeit addiert 1 Neonaufnahme zur Kalibrierung: RV = -8,9 km/s Jede Aufnahme mit Neonaufnahme kalibriert: RV = -7,4 km/s

14 Beobachtungstechnik Zeitlicher Ablauf einer Beobachtung:
Temperierung (ca. 30 Minuten) Neonspektrum (10 x 0,1s) 1. Sternspektrum (40s bis 300s) 2. Sternspektrum (40s bis 300s) n. Sternspektrum (40s bis 300s) Dunkelstromaufnahme Flatfield

15 Rohaufnahmen Erkenntnisgewinn Bestimmung der Dopplerverschiebung
Rohspektrum Flatfield Dunkelstrom etc. Bestimmung der Dopplerverschiebung Berechnung der RV-Werte heliozentrische Korrektur Auswertung von Zeitserien Datenreduktion Bildverarbeitung Normierung Kalibration Perioden- bestimmung Bahnparameter Solver Gaußfit Kreuz- korrelation 2-dim. Kreuz- korrelation Deeming Lomb-Scargle Korrekturverfahren (z.B. Vergleichssterne) pulsierende Sterne Doppelsterne zwei Spektren pulsierende Sterne Doppelsterne Doppelsterne Doppelsterne Grafiken – perfekte Amateursternwarte, Einsatz eines Lichtleiters Statistische Methoden -Fehlerrechnung -Ausreißertests etc. Erkenntnisgewinn Periodenbestimmung von Oszillationen Bahnparameter von Doppelsternen Zeitliche Variationen etc.

16 Kalibrierung der Spektren mit künstlicher Lichtquelle (Neon-Glimmlampe)

17 Kalibrierung der Spektren mit künstlicher Lichtquelle (Neon-Glimmlampe)

18 Kalibrierung der Spektren mit künstlicher Lichtquelle (Neon-Glimmlampe)

19 Bestimmung der Dopplerverschiebung
Bestimmung der Wellenlängen einzelner Linien durch Gaußfit:

20 Auswertung einer Messwerttabelle
mit der Zahl der Linien steigt die Genauigkeit der Messung. Auswahl geeigneter Spektrallinien, Zeitserien immer mit den gleichen Linien auswerten! Erkennung und Entfernen von Ausreißern mittels eines statistischen Testverfahrens. Berechnung der Unsicherheit der Messung (Standardabweichung des Mittelwertes)

21 Bestimmung der Dopplerverschiebung
über das gesamte Spektrum oder über Spektrenausschnitte mittels Kreuzkorrelation:

22 Ausblick Selbstbau eines 18“ Dobson und Verbesserung der Nachführung,
damit die 8 bis 10 fache Lichtmenge wie bisher Temperierung und ortsfeste Aufstellung des Spektrographen, weitere Erhöhung der Messgenauigkeit (Erreichen der 0,1 km/s Marke?) Weiterentwicklung der Software „SpecRaVE“, Gemeinschaftsprojekt mit der FG Computerastronomie, Mitarbeit ist ausdrücklich erwünscht !

23 Radialgeschwindigkeitsperiode der Hα – Linie von γ Cassiopeia
Mr. Miroshnichenko has published observation data of radial velocity variations in 2002. I’ve “tried to control” this results

24 Radialgeschwindigkeitsperiode der Hα – Linie
von γ Cassiopeia

25 Radialgeschwindigkeitsperiode der Hα – Linie von γ Cassiopeia
Harmanec et.al. Miroshnichenko et.al. ab 2006 P [Tage] /-0.29 /-0.38 203.0 e 0.26 0.00 0.07 ω [°] 47.9 +/-8.0 45 K1 [km/s] 4.68 +/-0.25 3.80 +/-0.12 4.22 rms [km/s] 1.455 0.936 0.786 Anzahl Spektren 272 162 57


Herunterladen ppt "Die Bestimmung von Radialgeschwindigkeiten"

Ähnliche Präsentationen


Google-Anzeigen