Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Hs / fub - AWSys/Sim1 Projekt Simulation: Einführung Simulation in a Nutshell - Teil 2 -  Simulation und Modellbildung  Klassifikation von Simulationsmethoden.

Ähnliche Präsentationen


Präsentation zum Thema: "Hs / fub - AWSys/Sim1 Projekt Simulation: Einführung Simulation in a Nutshell - Teil 2 -  Simulation und Modellbildung  Klassifikation von Simulationsmethoden."—  Präsentation transkript:

1 hs / fub - AWSys/Sim1 Projekt Simulation: Einführung Simulation in a Nutshell - Teil 2 -  Simulation und Modellbildung  Klassifikation von Simulationsmethoden  Zeitsynchrone Simulation: ein Beispiel  Ereignisgesteuerte Simulation - eine Fallstudie  Analyse und Interpretation von Simulationsläufen Literatur: Pagé, B.: Diskrete Simulation, Springer Verlag, 1991 Vorlesungsfolien Informatik 2, F. Mattern, TH Darmstadt, 1997

2 hs / fub - AWSys/Sim2 Beispiel: Telefonischer Fahrkartenvertrieb Fragen über Fragen: - wie viele Verkäufer? - Wie lange dauert es, bis ein Kunde bedient ist? - Werden alle in "etwa" der gleichen Zeit bedient? - Wie viel Anrufe kommen "in der Zeiteinheit" an? Was heißt das?? - Genauer: wie groß ist der Abstand zwischen zwei Anrufen? - Wie lange wartet eine Kunde, bevor er aufgibt und auflegt? - Wie viele Kunden können sich maximal in der Warteschleife aufhalten?

3 hs / fub - AWSys/Sim3 Eine Anwendung Beispiel Reisebüro: Telefonische Fahrkartenreservierung Systemspezifikation: 1. 5 Angestellte nehmen Buchungen entgegen Telefonleitungen (d. h. max. 13 Anrufer warten). 3. “Bitte warten” wenn alle Angestellten belegt. 4. Angest. wird frei --> am längsten wartenden bedienen (FIFO). 5. Wartebereitschaft der Kunden im Mittel 4 Min. (normalverteilt). 6. Endgültiger Verzicht eines Kunden, wenn keine Leitung frei oder Wartezeit überschritten. 7. Zwischenankunftszeiten exponentialverteilt (20 Sek.). 8. Bedienzeit exponentialverteilt (mit Mittel 1 Min. bei einfacher Fahrt, 2 Min. bei Rückfahrkarte). 9. Wahrscheinlichkeit für Rückfahrkarte = 0.75.

4 hs / fub - AWSys/Sim4 Zufallszahlen Im richtigen Leben hat man es oft mit Zufallszahlen (Zufallsgrößen) zu tun: - die Zahl beim Würfeln - die Wartezeit beim Bäcker (zwischen 7 und 8) - die Zeit zwischen zwei Anrufen beim Kartenservice.... Der Abstand zwischen zwei Anrufen ist eine zufällige Größe. Man nennt X eine Zufallsvariable, wenn sie die Werte einer Zufallsgröße annimmt. Die Variable X = "Abstand zwischen zwei Anrufen“ ist eine Zufallsvariable....

5 hs / fub - AWSys/Sim5 Verteilungsfunktion Zufallsfallsvariable X : Die Funktion F(x) = P(X < x) Wahrscheinlichkeit dafür, dass X < x heißt Verteilungsfunktion. Wahrscheinlichkeit, dass die Zeit zwischen 2 Anrufen "bis zu 4 Minuten" beträgt Exponentialverteilung Mittelwert = 0.33 min

6 hs / fub - AWSys/Sim6 Dichtefunktion Wahrscheinlichkeit,dass Abstand zwischen zwei Anrufen zwischen 2 und 4 Minuten liegt. Exponentialverteilung Mittelwert = 0.33 min Aus der Dichtefunktion f(x) läßt sich ablesen, mit welcher Wahrscheinlichkeit die Zufallsvariable Werte zwischen a und b annimmt, denn die Verteilungsfunktion F(x) ist definiert: F(x) =  f(t) dt x --

7 hs / fub - AWSys/Sim7 Fragen? 1. Wie weiß man, welche Verteilung eine Zufallsvariable hat? Weiß man normalerweise anfangs nicht! - analysiere kumulative Häufigkeiten (empirische Verteilung) - bestimme daraus empirische Verteilung - oder teste Vermutung, dass Daten in bestimmter allgemeiner Weise (normal, exponentiell,...) verteilt sind und teste diese Hypothese (mit statistischen Testverfahren) - oder es ist bekannt, dass gewisse Prozesse sich nach gewissen Verteilungen zufällig verhalten (z.B. normalverteilt). Dann müssen "nur noch" die Parameter bestimmt werden, besonders Mittelwert und Varianz.

8 hs / fub - AWSys/Sim8 Fragen? 2. Wie erzeugt man Zufallszahlen? Erzeugung wichtig, da "echter Zufall" im Rechner nicht existiert. Denkbar: Tabellen echter Zufallszahlen. Nicht handlich... Vorteil von Pseudozufallszahlen: Reproduzierbarkeit Gleichverteilte Zufallszahlen? Andere Verteilungsfunktion? Gleichverteilung F(x) = x (zwischen 0 und 1) Dichte: f(x) = 1 (zwischen 0 und 1 zwischen a und b: 1/(b-a)) Kongruenzenverfahren: z i+1 = (a * z i ) mod p, p große Primzahl Liefert Zufallszahlen zwischen 0 und p-1, Normierung auf 0<= z < 1 Im Simulationsprojekt: Java Klasse zur Erzeugung von Zufallszahlen benutzen.

9 hs / fub - AWSys/Sim9 Zufallszahlen Erzeugen anderer Verteilungen aus gleichverteilten Zufallszahlen (eine von mehreren Möglichkeiten) Z.B. Exponentialverteilung aus Gleichverteilung Idee: Verteilungsfunktion F(x) bildet eine (0,1) gleichverteilte Größe auf F(x) ab. Umkehrfunktion x = F -1 (y), z.B. x = -1/ * ln (1-y) (0,1)-gleichverteilter Y-Wert liefert F(x)- verteilten x-Wert

10 hs / fub - AWSys/Sim10 Zufällige Größen im Beispiel Zwischenankunftszeit der Anrufe Dauer eines Kartenverkaufs an einen Kunden (Bediendauer) exponentialverteilt (einfache Fahrt: Mittelwert 1 min, Rückfahrt: 2 min Art der Aufträge (mit unterschiedlicher Bediendauer !) diskrete Verteilung (nur endlich viele mögliche Werte): p = 0,25: einfache Fahrt, p = 0,75 = Rückfahrkarte Geduld–am–Ende – Zeit: Wann legt der Kunde auf, bevor er bedient wird? Normalverteilt, Mittelwert = 4 Min

11 hs / fub - AWSys/Sim11 Ereignisgesteuerte Simulation Aktivität Aktivität 3Akti. 4 A2 Ereignisse und Aktivitäten Aktivitäten können überlappen (Anruf und Kartenverkauf) Ereignisse entsprechen nicht in allen Fällen Anfang und Ende einer Aktivität. - Anfang / Ende verschiedener Ereignisse können zusammenfallen: "Ende Warten = Beginn Bedienung" - Ereignis ohne Dauer: "Geduld am Ende"

12 hs / fub - AWSys/Sim12 Modellentwurf „Kartenverkauf“ Zustand des Modells (" als Schnappschuß"): - Status (frei / beschäftigt) jedes Angestellten - Anzahl der freien Leitungen - Menge der wartenden Anrufer Braucht man die Identität oder nur die Anzahl ? Genügt hier nicht die Anzahl? Aus Sicht eines individuellen Kunden - Anruf --> Beginn Bedienung / Warten - Ende Warten (freie Bediener / abgelaufene Geduld) - Ende Bedienung EreignistypenEreignistypen ? Zustands- übergänge

13 hs / fub - AWSys/Sim13 Ereignisgesteuerte Simulation

14 hs / fub - AWSys/Sim14 Ereignisgesteuerte Simulation K3 Gibt auf 9.07 Ereigniszeit statt synchroner Ticks K1 AR,Beg. Bedienung 9.00 K2 AR,Beg. Warten 9.02 K3 AR,Beg. Warten 9.03 K2 Gibt auf 9.04 K4 AR 9.05 K1 Ende Bedienung 9.05 Wert der Zufallsvariable "Zwischenankunftszeit" K3 Ende Bedienung 9.06 K1 AR Beg. Bedienung 9.00 K2 AR Beg. Warten 9.02 K3 AR Beg. Warten 9.03 K2 Gibt auf 9.04 K3 Gibt auf 9.07 K4 AR 9.05 K1 Ende Bedienung 9.05 Erzeugung der Events K3 Ende Bedienung 9.06 Bei Benden des Wartens erzeugt K3 Bedien-Ende- Event Nur ein Bediener!

15 hs / fub - AWSys/Sim15 Modellierung Welche Ereignisse (Ereignistypen)? neuer Kunde kommt; versucht zu wählen! Ende der Geduld; nur wenn in Warteschleife Bedienende; Kunde verlässt das System Ist nicht auch Bedienanfang ein Ereignis? Welche Ergebnisdaten? Wartezeit pro Benutzer Anteil der abspringenden Kunden mittlere Warteschlangenlänge mittlere Auslastung von Leitungen / Bedienern..... Welche Zustände? # freie Bediener Schlange der wartenden Kunden # freier Leitungen Wartende Kunden sind keine Ereignisse

16 hs / fub - AWSys/Sim16 Der Zyklus der Simulation Initialisieren Gibt es noch ein Ereignis Uhr = Zeit des nächsten Ereignisses Ereignis aus Ereignis- liste entnehmen Ende der Simulation, Gesamtstatistik Ggf. Statistik- Ausgabe N Y Zustandsänderung gemäß Ereignis- routine Ende: „das letztes Ereigns“ bearbeitet oder Uhr > Sim.zeit Hier muß ein erstes Ereignis erzeugt werden, damit es los geht. Ggf. auch ein letztes! Hier passiert was: Zustand verändern, neue Ereignisse erzeugen. Es wird also immer das jüngste Ereignis bearbeitet. Dabei fallen ggf. neue Ereignisse an.

17 hs / fub - AWSys/Sim17 Die Ereignisroutinen Kundenanruf Auszuführen bei Eintritt des Ereignisses Nächsten Kunden- anruf vor- merken alle Leitungen besetzt? freiLeitungen --; Sachbearbeiter frei? Kundensatz er- zeugen, in Kunden- warteschlange GeduldEndeEreignis vormerken bediener--; Bedienroutine ausführen abgewieseneKd++ Hier wird auch das Ende- ereignis erzeugt! Trick: erhält die Simulation am Leben. Hat das mit Kausalität zu tun? Kundenanruf ursächlich für nächsten Kundenanruf??

18 hs / fub - AWSys/Sim18 Die Ereignisroutinen (2) Bedienende freieLeitungen++; KdWarteschlange leer? bedienert++; Kunden aus KdWarte- schlange entnehmen, Kdsatz löschen Bedienroutine ausführen Ja GeduldEnde Lösche Kundensatz freieLeitungen++;

19 hs / fub - AWSys/Sim19 Bedienung Bedienroutine GeduldEnde- ereignis löschen ggf. Statistikdaten schreiben u. Ausgaben Bedienende-Ereignis einplanen Beachte: es gibt zwei Arten von Objekten in der ereignis- gesteuerten Simulation: - Ereignisse: im wesentlichen intern, treiben die Simulation - nach der Realität modellierte Dinge, wie Warteschlange mit Kunden

20 hs / fub - AWSys/Sim20 Der ereignisgesteuerte Simulator schematisch Zustand Programmcode Uhr (Simulationszeit) springt zum jeweils nächsten Ereignis, Ereignisroutinen: ändern den Zustand, einschl. Erzeugung ggf. zukünftiger Ereignisse. Ereignisrepräsentation: prinzipiell ausreichend - Zeit - Ereignistyp

21 hs / fub - AWSys/Sim21 Die Kunst des (ereignisorientierten) Modellierens Aktivitäten so in Ereignisketten auflösen, dass Realität adäquat vom Modell widergespiegelt wird Wechselwirkungen zwischen Aktivitäten auf die Ereignisse beschränkt sind Ereignisse sich korrekt einplanen Ereignisroutinen die Zustandsveränderungen richtig wiedergeben. Entscheidende Frage: wie gut spiegelt das Simulationssystem die Realität wider? Modell adäquat? entsprechen die angesetzten Wahrscheinlichkeitsverteilungen den wahren Verhältnissen? Sind die Ergebnisse (statistisch) vertrauenswürdig? warum Bsp. nicht zeitgesteuert??

22 hs / fub - AWSys/Sim22 Planung und Analyse von Experimenten Zielgröße(n) festlegen: - Was soll untersucht werden? Hypothesen formulieren (zu jedem Experiment gehört Hypothese!) - Wovon hängen Zielgrößenwerte ab? - In welcher Größenordnung Fixieren der Parameter für das Untersuchungsziel Beispiel: - Wie lassen sich die Wartezeiten so verkürzen, dass nur noch jeder die 10 % der wartenden Kunden abspringt? - Hypothese: mehr Personal - Ziel: Aussage, wieviele Kunden prozentual abspringen, wenn nur statt n n+1, n+2,... Mitarbeiter eingesetzt werden? - Zielgröße: Kundenabsprung als Funktion von Anzahl eingesetzter MA Wichtig: Welches Vertrauen kann man in Ergebnisse haben? -> Statistik

23 hs / fub - AWSys/Sim23 Einschwingphase a) Heuristische Verfahren: - Augenmaß - Max / Min-Test: in Folge x 0, x 1,...x i, x i+1,... prüfen, ob x i Max oder Min der x j, i

24 hs / fub - AWSys/Sim24 Schätzgenauigkeit der Ergebnisse Abstraktes Simulationsproblem: - Gesucht die Verteilungsfunktion F(X) einer Zufallsvariable des Modells (z.B. Anzahl der Kunden in der Warteschleife) - Oft ausreichend: Erwartungswert der unabhängigen Zufallsvariablen schätzen - E [X ] =  =  x f(x) dx - x 1,x 2,...x n sei Ausgang eines Experiments (z.B. die gemessenen Längen der Warteschlange zu n Zeitpunkten) - Mittelwert ist erwartungstreuer Schätzwert für echten Mittelwert  : x = (1/n)   x i, d.h lim ( (1/n)   x i ) =  i=1..n n ->  i=1..n - reicht aber nicht für genauere Aussagen. Beispiel...

25 hs / fub - AWSys/Sim25 Schätzgenauigkeit Beispiel aus der Literatur: Für Bedien- / Wartesystem mit exponentialverteilter Zwischenankunfts- und Bedienzeit lässt sich Mittelwert analytisch errechnen (M/M/1-Bediensystem) Erwartungswert für Warteschlangenlänge bei bestimmten Parametern:  = 4,86 Aber X = 3,2 bei Stichprobe von n = 1000 Wie bestimmt man  ? X ist selbst eine Zufallsvariable mit dem Mittelwert E(X) =  Abschätzen, mit welcher Wahrscheinlichkeit der wahre Mittelwert  in einem Intervall [x – c n, x + c n ] liegt.

26 hs / fub - AWSys/Sim26 Schätzgenauigkeit der Simulationswerte Mit welcher Wahrscheinlichkeit (Konfidenzniveau) befindet sich der wahre Wert  in einem gegebenen Intervall (Konfidenzintervall) - Typische Aufgabe der Statistik, nicht simulationsspezifisch. t „Mit Wahrscheinlichkeit 0.95 findet man den wahren Wert der Anrufer, die aufgeben, iin diesem Intervall

27 hs / fub - AWSys/Sim27 Konfidenzintervall Tatsächlicher, unbekannter Mittel- wert x x-c n x+c n x x-c n x+c n x x-c n x+c n Experiment 1 Experiment 2 Experiment n

28 hs / fub - AWSys/Sim28 Schätzen der Lage des Mittelwerts Wie groß ist Streuung  ?? Es gilt : der wahre Mittelwert liegt bei genügend großem n mit von z abhängiger Wahrscheinlichkeit im Intervall: [ x - z*  /(  n), x + z *  /(  n)] wenn die unbekannte Verteilung die Varianz  hat. Also c n = z*  /(  n) z = 1,96 : Wahrscheinlichkeit beträgt 0,95, dass  im Intervall. Schätzen!

29 hs / fub - AWSys/Sim29 Varianz schätzen Schätzer für Varianz : Varianz: Var(X) = E[(X-E(X)) 2 ] =  2 =  (x –  ) 2 f(x) dx Var(X 1 +X X n ) = Var(X 1 ) + Var(X 2 ) Var(X n ) für unabhängige X i Wenn   Varianz der X i, dann  (X) =  /  n Schätzwert dafür : s 2 = 1/(n-1)  (x i - x ) 2 Standardabweichung:  ~ s =  s 2 Damit : Mittelwert m liegt mit 95%iger Wahrscheinlichkeit im Intervall [ x - 1,96* s/(  n), x + 1,96 * s/(  n)] (*) Wichtige Voraussetzung: die X sind unabhängig! Anzahl Versuche groß ! n >= 30

30 hs / fub - AWSys/Sim30 Vorgehen Unabhängige Simulationsläufe, die die interessierenden Größen jeweils zu einem neuen Stichprobenwert zusammenfassen. Mit den n unabhängigen Simulationsläufen Konfidenzintervall für E(X) mit (*) bestimmen. Verfahren funktioniert nur bei unabhängigen Versuchen n >= 30 Sehr aufwendig, da die die gesamte Simulation wiederholt werden muß. Es gibt statistische Verfahren mit geringerem Aufwand

31 hs / fub - AWSys/Sim31 Beispiel Experiment igemessener Mittelwert x 15, x = 5.96 s = * s/(  n) = 0.74 x  0.74 = [5.22, 6.7] Tatsächlicher Mittelwert m Liegt mit Wahrscheinlichkeit 0,95 im Intervall [5.22, 6.7]

32 hs / fub - AWSys/Sim32 Validierung Operationale Verifikation Stimmen das dynamisch Modellverhalten mit der Realität überein? (für Prognosemodelle offenbar besonders schwer. 20 Jahre warten??) - Vergleich mit historischen Daten - Vergleich von Verteilungen von echten und von Modelldaten (statistische Testverfahren) - unabhängiges Modell erstellen, rechnen und vergleichen Klassifikation der Validierungsschritte stammt von Pagé (s. Literatur)... ist schwierig! Stimmt das konzeptuelle Modell mit Realität überein? - Experten befragen, - Verifikation der Verteilungsannahmen durch Analyse von echten Daten Modellverifikation Tut das System das, was es soll? - Prinzipien der Entwicklung großer Programme beachten, - Plausibilitätsprüfungen


Herunterladen ppt "Hs / fub - AWSys/Sim1 Projekt Simulation: Einführung Simulation in a Nutshell - Teil 2 -  Simulation und Modellbildung  Klassifikation von Simulationsmethoden."

Ähnliche Präsentationen


Google-Anzeigen