Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Einführung zur Fehlerrechnung. Messen einer physikalischen Größe erfolgt direkt durch Vergleich mit einem zuvor definierten Maßstab oder indirekt über.

Ähnliche Präsentationen


Präsentation zum Thema: "Einführung zur Fehlerrechnung. Messen einer physikalischen Größe erfolgt direkt durch Vergleich mit einem zuvor definierten Maßstab oder indirekt über."—  Präsentation transkript:

1 Einführung zur Fehlerrechnung

2 Messen einer physikalischen Größe erfolgt direkt durch Vergleich mit einem zuvor definierten Maßstab oder indirekt über eine wohlbekannte Beziehung unter Verwendung einer oder mehrerer einfacher zugänglicher Größen. Jede gemessene Größe enthält unvermeidbar einen Messfehler. Deshalb werden nur die signifikanten Stellen einer physikalischen Größe angegeben. In der numerischen Darstellung einer physikalischen Größe ist die letzte Stelle signifikant, d.h. die nächste Stelle ist um  eine halbe Stelle ungewiß. ACHTUNG: Auch angegebene Nullen sind signifikant! Beispiel: Die Angabe x = 2,0 m bedeutet: 1,95 m  x  2,05 m

3 Angabe einer Messgröße Allgemeine Ergebnisangabe: Beispiel: v = (3,77  0,04) m/s Der wahre Wert x W ist nicht identisch mit dem Mittelwert Der Wert x W liegt mit einer gewissen Wahrscheinlichkeit (nicht mit Sicherheit) im durch die Messunsicherheit u bestimmten Intervall: Bei n Messungen x i, i = 1....n wird für der arithmetische Mittelwert eingesetzt:

4 Methode der kleinsten Quadrate Die Beziehung für den Mittelwert folgt aus der von Gauß entwickelten Methode der kleinsten Quadrate: Der Mittelwert wird so definiert, dass die Summe der Quadrate der Abweichungen vom Mittelwert ein Minimum wird: Aus dem Nullsetzen der ersten Ableitung folgt mit Die Beziehung für den Mittelwert: (gleichgewichteter Messwerte)

5 WICHTIG!!! Der Mittelwert wird nicht genauer, als der Messfehler angegeben. Die Messunsicherheit wird nur auf eine Stelle genau angegeben. Richtig: s = (3,14  0,02) m Falsch: s = (3,1416  0,021) m

6 Zielstellung der Fehlerrechnung Die Zielstellung der Fehlerrechnung ist die Bestimmung der Messunsicherheit u Die Messunsicherheit u setzt sich zusammen aus einem systematischen und zufälligen Anteil: u = |e S | + |e Z | Die Angabe der Messunsicherheit erfolgt entweder als absoluter Fehler: oder als relativer Fehler:

7 Fehlerarten Entsprechend ihrer Ursache unterscheidet man: grobe Fehler : sind durch ‘sauberes’ Experimentieren auszuschließen konstante Fehler : können durch Differenzmessung ausgeschlossen werden systematische Fehler : sind ihre Ursachen bekannt, können sie durch Korrekturrechnung ‘herausgerechnet’ werden. Diese „Korrekturfehler“ verändern den Betrag des Mittelwertes. Es bleibt ein systematischer Restfehler bestehen, der, bedingt durch die Genauigkeit der Messinstrumente, in den Gesamtfehler eingeht. zufällige Fehler : siehe folgende Folie

8 Zufällige Fehler sind statistische Fehler und können durch eine hohe Zahl von wiederholten Messungen minimiert werden. Die mittlere quadratische Abweichung vom Mittelwert einer n-fach gemessenen Größe ist durch die (empirische) Standardabweichung bzw. Streuung  gegeben: Die Standardabweichung heißt auch mittlerer Fehler der Einzelmessung. Bei einer großen Zahl von Messungen hängt der Betrag von  nicht von n ab. Den mittleren Fehler des Mittelwertes nennt man Vertrauensbereich. Er hängt von n ab und wird folgendermaßen ermittelt: Der Student‘sche Faktor t kann für n > 6, besser n > 10, gleich 1 gesetzt werden. Der Vertrauensbereich ist der Beitrag des zufälligen Fehlers e Z zur Messunsicherheit, vorausgesetzt n > 6.

9 Messunsicherheit u=e z +e s Der Vertrauensbereich s ist der Beitrag des zufälligen Fehlers e Z zur Messunsicherheit. Der systematische Restfehler e S ist der Anteil des systematischen Fehlers an der Messunsicherheit u.

10

11 Lineare Fehlerfortpflanzung Fehler pflanzen sich fort. Haben wir einen Zusammenhang y = f(x 1,..,x i,..,x n ), so gilt für das dy =  (  y/  x i )dx i (Taylorentwicklung in linearer Näherung), bzw. nach dem Übergang zu den Differenzen (der Betrag ist notwendig, da sich Fehler nie gegenseitig aufheben): Für Summen y(x,z) =ax + bz folgt daraus: Es addieren sich die absoluten Fehler der Größen x und z, gewichtet mit den Vorfaktoren a und b.

12 Für Produkte der Art y = cx/z erhält man aus der linearen Abschätzung Es addieren sich die relativen Fehler der Einzelgrößen. Im Falle von Potenzfunktionen y = x n z m erhält man Es addieren sich die relativen Fehler der Größen x und z – gewichtet mit den Beträgen der Exponenten n bzw. m. Die oberen Näherungsformeln eignen sich gut für Fehlerabschätzungen. Für genauere Rechnungen (bei großer Zahl von Messwerten) benutzt man das Gauß‘sche Fehlerfortpflanzungsgesetz:

13 Gauß‘sches Fehlerfortpflanzungsgesetz Die lineare Fehlerfortpflanzung wird in der Regel zur Fehlerabschätzung für systematische Fehler und bei einer sehr geringen Zahl von Messwerten auch im Falle zufälliger Fehler angewendet. Da insbesondere gilt (negative Abweichungen sind genauso wahrscheinlich, wie positive), geht man zu den Quadraten der Abweichungen über:

14 Trägt man alle Änderungen der Funktion f in einem linearen Vektorraum mit den Koordinaten x i auf, so ergibt sich der Gesamtbetrag aller Abweichungen u y durch pythagoräische Summation der einzelnen Abweichungen u i gewichtet mit dem partiellen Anstieg der Funktion f. Beispiel: Zylindervolumen

15

16 Varianz und Zuverlässigkeit Die empirische Standardabweichung, Streuung oder Varianz ist ein Maß für die Genauigkeit des Messverfahrens. Sie gibt an, in welchem Intervall der n-te Messwert (mit einer Wahrscheinlichkeit von 68%) zu erwarten ist. Der Vertrauensbereich ist ein Maß für die Zuverlässigkeit der Messung. Bei n Messwerten x i errechnet man mittels des Fehlerfortpflanzungsgesetzes den Fehler der Funktion, wobei x i den Fehler  hat: Will man eine höhere statistische Sicherheit, so muss man s mit dem Student‘schen Faktor für die gewünschte Wahrscheinlichkeit multiplizieren.

17 Geradenausgleich Ein physikalischer Zusammenhang sei durch eine Gerade y(x) gegeben. Einfachster Fall: Gerade durch den Nullpunkt y = ax Gemessen werden n Wertepaare y i (x i ), gesucht ist der Anstieg a sowie sein Fehler u a. Unter Anwendung der Methode der kleinsten Quadrate erhält man den Anstieg a zu und den zufälligen Fehler von a unter Anwendung des Gauß‘schen Fehlerfortpflanzungsgesetzes zu Den allgemeinen Fall y = ax + b sowie die Verfahren zur Linearisierung von Funktionen studiere man in der ausgehändigten Skripte.

18 Allgemeiner Fall y = ax + b:

19 Gauß‘sche Normalverteilung Die Gauß‘sche Normalverteilung spiegelt die Statistik der zufälligen Fehler wider: Sie hat ein Maximum beim Wert. Sie ist symmetrisch bezüglich. Für besitzt sie einen Wendepunkt und ist schmal für kleine . Die Normierung ist

20

21 Das Integral gibt die Wahrscheinlichkeit an, einen Messwert x im Intervall x 1  x  x 2 zu finden. Das Integral gibt an, dass die Wahrscheinlichkeit, einen einzelnen Messwert innerhalb der durch die Standardabweichung definierten Grenzen zu finden, 68,3..% beträgt. Das folgende Integral berechnet den Mittelwert von x

22

23 Streuung Wir gehen über zu Die Fehlerverteilungsfunktion lautet dann: Die mittlere quadratische Abweichung bzw. Streuung  erhält man dann mittels der Beziehung für den quadratischen Mittelwert Für den linearen Mittelwert erhält man erwartungsgemäß

24 Fehlerfunktion Das Integral heißt Gauß‘sche Fehlerfunktion.

25 Fehlerfunktion

26 Diskrete Messwerte h(x i ): relative Häufigkeit des Messwertes x i

27 Mittelwerte Stetige Zufallsgröße x mit der Wahrscheinlichkeitsdichte  (x) Diskrete Zufallsgröße x mit der relativen Häufigkeit h(x i ) Stichproben der Klassen x j mit den absoluten Häufigkeiten k(x j ) Stichprobe der Elemente x i vom Umfang n


Herunterladen ppt "Einführung zur Fehlerrechnung. Messen einer physikalischen Größe erfolgt direkt durch Vergleich mit einem zuvor definierten Maßstab oder indirekt über."

Ähnliche Präsentationen


Google-Anzeigen