Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Entscheidungs- rechnungen bei Unsicherheit © Ewert/Wagenhofer 2014. Alle Rechte vorbehalten!

Ähnliche Präsentationen


Präsentation zum Thema: "Entscheidungs- rechnungen bei Unsicherheit © Ewert/Wagenhofer 2014. Alle Rechte vorbehalten!"—  Präsentation transkript:

1 Entscheidungs- rechnungen bei Unsicherheit © Ewert/Wagenhofer Alle Rechte vorbehalten!

2 5.2 Ziele n Darstellung der Vorgehensweise bei der Break Even-Analyse n Analyse der Auswirkungen von Unsicherheit auf die Produktionsprogrammplanung und der Struktur der Lösungen bei Marktwertmaximierung und Erwartungsnutzen­ maximierung n Aufzeigen der Entscheidungsrelevanz von Fixkosten unter verschiedensten Bedingungen

3 5.3 Motivation n Gründe für Annahme sicherer Erwartungen bei KLR KLR dient kurzfristig wirksamen Entscheidungen Erläuterung grundlegender Prinzipien n Gegenargument Stimmigkeit obiger Argumente erst nach Analyse unter Einbeziehung von Unsicherheit beurteilbar n Einbeziehung von Unsicherheit Behandelte Ansätze Break Even-Analyse Modellansätze für kurzfristig wirksame Entscheidungen und Lösungsstrukturen am Beispiel von Produktionsprogrammentscheidungen Besondere Fragen dabei Messung von Risiko Entscheidungskontext: zB Handelbarkeit des Eigenkapitals Entscheidungsrelevanz von Fixkosten

4 5.4 Break Even-Analyse Grundlagen n Grundidee Einfluss von exogenen Parametern auf die Lösung von Entscheidungsproblemen n Methode: Sensitivitätsanalyse Empfindlichkeit der Zielgrößen auf Änderungen der Parameter Ermittlung des “günstigen” Parameterbereichs: Entscheidung bleibt optimal n Grundmodell der Break Even-Analyse Fokus auf Beschäftigungsunsicherheit Ermittlung einer Break Even-Menge Ermittlung anderer kritischer Parameterwerte möglich

5 5.5 BEA im Einproduktfall Bestimmung des Periodengewinns mit dDeckungsbeitrag k variable Stückkosten je Produkteinheit p Absatzpreis je Produkteinheit x Produkteinheiten K F Fixkosten

6 5.6 BEA im Einproduktfall Beispiel Beispiel Absatzpreis = 100, variable Kosten = 40, Fixkosten = BEM = /(100-40) = x E, K Erlöse E Kosten K Verlustzone Gewinnzone

7 5.7 BEA im Einproduktfall Andere kritische Werte n Break Even-Stückkosten n Break Even-Preis n Kritischer Gewinn G

8 5.8 BEA im Einproduktfall Fortsetzung Beispiel Fixkosten = Absatzpreis = 100 variable Kosten = 40 Menge = kritischer Gewinn = 0 Break Even-Preis = /1.800 = 106,67 für Absatzpreis = 90 Break Even-Stückkosten = /1.800 = 23,33 Für Absatzpreis = 80 Break Even-Stückkosten = /1.800 = 13,33

9 5.9 BEA im Einproduktfall Auswertungen n Beeinflussung der Break Even- Menge durch Veränderung der proportionalen Stückkosten Veränderung des Absatzpreises Veränderung des Mindestgewinns Erhöhung des Fixkostenblocks durch zusätzliche Werbemaßnahmen, Einstellung von zusätzlichem Verkaufspersonal Änderung auf Produktionsverfahren in Richtung niedrigerer variabler Stückkosten bei höheren Fixkosten n Deckung auszahlungswirksamer Teile der Fixkosten (“Cash-Point”) E, K Absatzmenge x Erlöse E Kosten K Verlustzone Gewinnzone

10 5.10 Risikomaße Sicherheitskoeffizient SK n Fragestellung Um welchen Prozentsatz darf Umsatz/Absatz (ausgehend von Basiswert) sinken, ohne in die Verlustzone zu geraten? n Überlegungen Je höher SK, desto sicherer positiver/bestimmter Periodenerfolg Ausgangsmenge x: volle Kapazitätsauslastung Beispiel Kapazität x = , BE-Menge = Sicherheitskoeffizient = 1  8.000/ = 0,2 Kapazitätsauslastung kann um 20% unterschritten werden, ehe man Verluste macht

11 5.11 Operating Leverage OL n Fragestellung Relative Gewinnänderung im Verhältnis zur relativen Umsatzänderung Einfluss der Fixkosten ersichtlich Definition ohne Berücksichtigung eines Mindestgewinns: n Letztlich aber nur Umformung des Sicherheitskoeffizienten

12 5.12 Stochastische Break Even-Analyse Einproduktfall n Explizite Untersuchung der Wahrscheinlichkeitsverteilung des Gewinns Verteilung der einzelnen Bestimmungsfaktoren n Annahme risikobehafteter Absatzmengen n Risiko als Wahrscheinlichkeit für Erfolgsniveau G Break Even-Wahrscheinlichkeit

13 5.13 Stochastische Break Even-Analyse Beispiel Absatzmengen x seien gleichverteilt im Intervall Break Even-Wahrscheinlichkeit

14 5.14 Stochastische Break Even-Analyse Beispiel... n Absatzmengen gleichverteilt in [0, ] F(x) = 0,0001x Deckungsbeitrag d = 50, Fixkosten = Break Even-Menge = F(4.000) = 0,4 und Break Even-Wahrscheinlichkeit = 0, Menge Wahrscheinlichkeit

15 5.15 n Fragestellung Wie hoch ist der maximale Erfolg, der mit einer vorgegebenen Wahrscheinlichkeit überschritten wird? Stochastische Break Even-Analyse Weitere Fragestellung

16 5.16 Stochastische Break Even-Analyse Beispiel n Maximierung der Break Even-Wahrscheinlichkeit Annahmen: Absatzmengen gleichverteilt in [0, ] Deckungsbeitrag d = 40 Fixkosten = Variante:Einstellung Verkaufspersonal mit Fixkosten = und Obergrenze Absatzmenge = Mindestgewinn = n Ausgangssituation: erforderlicher Absatz = 8.750; Wahrscheinlichkeit 0,125 Variante:erforderlicher Absatz = ; Wahrscheinlichkeit = / = 0,1538 Einstellung daher vorteilhaft

17 5.17 Stochastische Break Even-Analyse Beispiel... n Fragestellung: Ergebnismaximierung bei vorgegebener Wahrscheinlichkeit Vorgegebene Wahrscheinlichkeit = 0,4 n Ausgangssituation G = 40[  0,4(  0)] = Variante G = 40[  0,4(  0)]  = Einstellung zusätzlichen Verkaufspersonals unvorteilhaft

18 5.18 Simulationsverfahren 1. Auswahl als unsicher betrachteter Parameter (P) 2. Schätzung isolierter Wahrscheinlichkeiten für jeden P 3. Ermittlung der Ausgangsgrößen für Simulationslauf Zufallszahlen für jeden P gleichverteilt in [0, 1] Transformation in konkreten Parameterwert Berücksichtigung stochastischer Abhängigkeiten durch sukzessives Vorgehen 4. Berechnung der Zielgröße 5. Häufige Wiederholung von 3. und 4. (zB mal) 6. Ermittlung der Verteilungsfunktion der Zielgröße aus relativen Häufigkeiten

19 5.19 Transformation von Zufallszahlen

20 1.20 Value-at-Risk und Cash-Flow-at-Risk n Risikomaße im praktischen Risikomanagement n Value-at-Risk (VaR) Downside-Risikomaß Probleme bei Anwendung im Nichtbankenbereich n Cash-Flow-at-Risk (CFaR) Berücksichtigt Besonderheiten im Nichtbankenbereich

21 5.21 Break Even-Analyse Mehrproduktfall n Ausgleichseffekte zwischen verschiedenen Produktarten n Produktionsprogramm soll in seiner Gesamtheit ein bestimmtes Ergebnis bescheren n Nicht mehr eine Break Even-Menge, sondern eine Vielzahl von Mengenkombinationen Absatzmengenkombinationen der Produktarten j = 1,..., J:

22 5.22 Break Even-Analyse Mehrproduktfall... n Zweiproduktfall: Gerade n Mehrproduktfall: Konvexkombination isolierter Break Even-Mengen

23 5.23 Break Even-Analyse: Mehrproduktfall Beispiel n J = 4 Produktarten Deckungsbeiträge: d 1 = 20; d 2 = 70; d 3 = 60; d 4 = 150 Fixkosten = Mindestgewinn = Break Even-Mengen Beliebiger Break Even-Vektor

24 5.24 Break Even-Analyse Mehrproduktfall... Konstanter Absatzmix n Beliebiges Produkt als Leitprodukt n Annahme konstanter Verhältnisse der Absatzmengen Für erstes Produkt als Leitprodukt und  j als konstante Verhältnisse der Absatzmengen der Produkte j zu Produkt 1

25 5.25 Break Even-Analyse: Mehrproduktfall Break Even-Umsatz Ermittlung des Break even-Umsatzes bei konstantem Absatzmix Relation “Deckungsbeitrag zu Gesamtumsatz” für jedes Produkt gegeben und konstant

26 5.26 Break Even-Analyse: Mehrproduktfall Beispiel Mengenrelation 1 : 2 : 4 : 4

27 5.27 Break Even-Analyse: Mehrproduktfall Beispiel... Mengenrelation 1 : 2 : 4 : 4 Gegeben seien folgende Preise

28 5.28 Pessimistische und optimistische Variante n Pessimistische Variante Individuelle Deckungsbeitrags-Umsatz-Relationen D j /E j in aufsteigender Reihenfolge, bis Absatzobergrenze erreicht ist n Optimistische Variante umgekehrt Gewinn G Umsatz E KFKF optimistische Variante Produkt 3 Produkt 2 Produkt 1 pessimistische Variante Produkt 1 Produkt 3 Produkt 2

29 5.29 Verfahrenswahl bei Unsicherheit n Varianz der Absatzmengen: 150 n Absatzpreis: 10 Verfahren 1: Verfahren 2: Gleiche Werte für SK und OL Gewinnvarianzen Verfahren 1: Verfahren 2:

30 5.30 Beurteilung von SK und OL n Problem: Keine Berücksichtigung der Verteilungen bei SK und OL Darstellung am Beispiel der Gewinnvarianz n Wirkungen Tatsächlich Niedrigere Stückkosten führen zu höherem Deckungsbeitrag und höherer Varianz des Gewinns Fixkosten haben keine Auswirkung auf die Varianz Kennzahlen Niedrigere Stückkosten führen zu höherem Deckungsbeitrag, zu geringerer BEM und zu höherem SK und niedrigerem OL Höhere Fixkosten führen zu größerem OL

31 5.31 Vergleich mit dem Variationskoeffizienten VK Hier gilt Diese Beziehungen sind analog zu denjenigen bei SK und OL

32 5.32 Verfahrenswahl bei Risikoaversion n Entscheidungsträger ist risikoscheu n Nutzenfunktion: n Sicherheitsäquivalent:

33 5.33 Beispiel n Risikoaversion des Entscheidungsträgers wirkt sich auf die Break Even-Mengen der Verfahren aus n Bei r = 0,5 ergeben sich für die Risikoprämien und Break Even- Mengen: n Break Even-Punkt: (d 1 + d 2 ) > 0 => Break Even Punkt bei Risikoaversion höher als bei Risikoneutralität

34 5.34 Verfahrenswahl bei Risikoaversion – Break Even-Punkt

35 5.35 Break Even-Analyse Ergebnis n BEA vermittelt Gefühl für Bedeutung der Unsicherheit n BEA als wichtige Signalfunktion insbes für mehr Informationsbeschaffungen bzw Planungsansätze unter expliziter Einbeziehung von Wahrscheinlichkeitsverteilungen n Keine konkrete Handlungsempfehlung n Erfordernis expliziter Analyse der Konsequenzen verschiedener Problemstrukturen für die Unternehmenspolitik

36 5.36 Programmplanung bei Risiko n Untersuchung der Implikationen expliziter Risikoberücksichtigung in der Produktionsprogrammplanung Bestehen Unterschiede in der Lösungsstruktur n Was ist risikobehaftet? Risikobehaftete Beschaffungs- oder Absatzpreise (Deckungsbeitrag) Risikobehaftete Fixkosten n Annahmen im folgenden Eine Mehrproduktrestriktion, die nicht risikobehaftet ist Gesamtes Produktionsprogramm wird im voraus festgelegt

37 5.37 Programmplanung bei Risiko Annahmen und Vorgehen n Wichtige Eigenschaft: Lösungsstruktur hängt vom Entscheidungskontext und Präferenzsystem ab n Szenarien Beschränkung auf institutionales Unternehmen ohne Kapitalmarkt: Erwartungsnutzenmaximierung Produktionsprogramm direkt am Kapitalmarkt handelbar: Marktwertmaximierung Produktionsprogramm nicht direkt handelbar, aber über Portefeuilleentscheidungen diversifizierbar: Virtuelle Marktwertmaximierung

38 5.38 Erwartungsnutzenmaximierung (1) n Zielgröße Subjektive Bewertung des Risikos durch einzelnen Entscheidungsträger n Bernoulli-Prinzip: Erwartungsnutzenmaximierung Subjektive Nutzenfunktion U für jeden Entscheidungsträger Ergebnisgröße  : Endvermögen der Planungsperiode Endvermögen  = gegebenes Anfangsvermögen  0 + Periodengewinn Gewählte Alternative ist jene mit dem größten Nutzenerwartungswert

39 5.39 Erwartungsnutzenmaximierung (2) n Spezialfall Risikoneutralität Nutzenfunktion U linear: U(  R  mit R  > 0 Entscheider ist risikoneutral Gesucht Produktionsprogramm mit maximalem (Perioden-)Gewinnerwartungswert Reihung nach dem höchsten erwarteten spezifischen DB Fixkosten sind irrelevant

40 5.40 Ausschließliche Produktion von Produkt /5 = 280 Stück Erwarteter DB: Beispiel Produkt 1 2 DB je zu 50% 10 oder Stunden/St 5 5 erwarteter DB Kapazität: Stunden

41 5.41 Erwartungsnutzenmaximierung (3) n Allgemeinerer Fall Risikoscheu Streng konkave Nutzenfunktion U U’(  ) > 0; U’’(  ) < 0 Programmplanung als nichtlineares Optimierungsproblem Bedeutung des erwarteten spezifischen DB nimmt ab Es kommt zu Diversifikationseffekten Maximierung des Erwartungsnutzens führt zu optimalem Produktprogramm-Portefeuille

42 5.42 Beispiel Produkt 1 2 DBje zu 50% 10 oder 2014 Stunden/St5 5 Kapazität: Stunden Nutzenfunktion logarithmisch;  > 0 Annahmen:  0 = 0 und Fixkosten = 0 Kuhn/Tucker-Bedingungen

43 5.43 Beispiel... n Frage: Sind beide Produkte im optimalen Programm? Wird nur Produkt 1 gefertigt, darf an Stelle (280, 0) die Ableitung von LG nach x 2 nicht positiv sein Setzt man diesen Wert für in die obige Ableitung ein, ergibt sich eine positive Differenz von 0,00035  Produkt 2 ist Bestandteil des optimalen Produktionsprogramms Ähnliche Vorgehensweise zeigt, dass auch Produkt 1 im optimalen Produktionsprogramm enthalten ist

44 5.44 Beispiel... Ermittlung des optimalen Produktionsprogramms Restriktion als Gleichung nach Produkt 2 auflösen Nullsetzen der 1. Ableitung

45 5.45 Erwartungsnutzenmaximierung (4) n Entscheidungsrelevanz von Fixkosten abhängig vom Verlauf der Risikoaversion Maß der Risikoscheu Absolute Risikoaversion AR(  ) Beispiel: Logarithmische Nutzenfunktion Absolute Risikoaversion nimmt - gegeben ein Anfangsvermögen - ab Höhere Fixkosten induzieren niedrigeres Endvermögensniveau Wahrscheinlichkeitsverteilung für Produktionsprogramm wird in einen Bereich der Nutzenfunktion mit stärkerer Risikoscheu verschoben

46 5.46 Beispiel... Positives Anfangsvermögen  0 positive, sichere Fixkosten K F n Zielfunktion Fixkosten über  0 : nur Produkt 2 Anfangsvermögen über K F : nur Produkt 1

47 5.47 Erwartungsnutzenmaximierung (5) n Spezialfall Konstante absolute Risikoaversion (sichere) Fixkosten und sicheres Anfangsvermögen wieder bedeutungslos Beispiel: exponentielle Nutzenfunktion Wegen U(  ) < 0 ist -  U(  ) positiv Mit  =  0  K F wird Irrelevanz von K F und Anfangsvermögen deutlich

48 5.48 Erwartungsnutzenmaximierung (6) n Stochastische Fixkosten Potentielle Relevanz der Fixkosten wird verstärkt Zusätzliche Diversifikationsaspekte hinsichtlich risikobehafteter Fixkosten Auch bei konstanter absoluter Risikoaversion grundsätzliche Relevanz der Fixkosten Exponentielle Nutzenfunktion mit

49 5.49 Erwartungsnutzenmaximierung (7) n Keine Fixkostenrelevanz nur dann, wenn Fixkosten mit DB völlig unkorreliert sind n Stochastische Fixkosten alleine induzieren keine Fixkostenrelevanz Deckungsbeiträge dann sicher  Zustandsabhängiges Endvermögen für jeden Zustand maximal bei Programm mit maximalem Deckungsbeitrag  Dominanzprinzip Man kann sich auf die bekannten Sicherheitsansätze beschränken, falls die Fixkosten die alleinige risikobehaftete Größe sind

50 5.50 Erwartungsnutzenmaximierung (8) Zusammenfassung Relevanz von Fixkosten Fixkosten sind  irrelevant, falls Nutzenfunktion mit konstanter absoluter Risikoaversion und Fixkosten sicher  irrelevant, falls Fixkosten die alleinige stochastische Größe  regelmäßig auch als sichere Größe relevant, falls Nutzenfunktion ohne konstante absolute Risikoaversion  grundsätzlich relevant, falls neben Deckungsbeiträgen auch Fixkosten risikobehaftet und keine lineare Nutzenfunktion (Risikoneutralität) Relevanz des Anfangsvermögens  obige Ergebnisse gelten analog  Anfangsvermögen am Periodenbeginn aber sicher -- insofern muss diesbezüglich keine Unsicherheit beachtet werden

51 5.51 Erwartungsnutzenmaximierung (9) Implikationen n Begründung der Verwendung von Vollkostenrechnungen Streng genommen nur Vollkostenrechnungen als Periodenrechnungen n Fixkosten relevant wegen Einflusses auf Bewertung der Gewinnverteilungen Fixkosten nach wie vor unabhängig von den Entscheidungsvariablen n Faktisch nichtlineares Entscheidungsproblem Risikobehaftetes Endvermögen ist das Argument einer Nutzenfunktion, deren Erwartungswert zu maximieren ist n Problem: Bestimmung der Nutzenfunktion Was ist der Nutzen des Endvermögens der betrachteten Periode? Probleme mit Ausschüttungen, Effekte von Folgeentscheidungen, Bewertungsinterdependenzen

52 5.52 Marktwertmaximierung (1) n Marktwertmaximierung als Ziel, wenn Anteile am Produktionsprogramm am Kapitalmarkt gehandelt werden n Typisch für börsennotierte Unternehmen Entspricht Unternehmenswertmaximierung n Berechnung von Marktwerten Time State Preference-Ansatz Arbitrage Pricing Theory (APT) (Arbitragefreiheit im Marktgleichgewicht)

53 5.53 Marktwertmaximierung (2) n Marktannahmen n Spanning Eine Unternehmung kann durch ihre Entscheidungen keine “völlig neue” Rückflussstruktur schaffen. Die bestehenden Finanztitel am Kapitalmarkt spannen einen Vektorraum auf, der durch Investitions- und Produktionsentscheidungen eines betrachteten Unternehmens nicht verändert wird. n Competitivity Bewertungssystem am Kapitalmarkt wird durch Entscheidungen eines Unternehmens nicht verändert. Entspricht der Annahme eines konstanten Zinssatzes im Rahmen der Kapitalwertmaximierung bei sicheren Erwartungen

54 5.54 Marktwertmaximierung (3) Vorgehensweise Planungszeitraum von T Perioden Zahlungsüberschüsse Ü am Periodenende risikobehaftet durch Zustände  (t) Zustandsraum für Periode t...  (t) Für jeden Zustand positiver Bewertungsfaktor R  (t)) Marktwert genau einer anfallenden Geldeinheit aus Sicht t = 0 Marktwert W zu t = 0 Bewertungsfaktoren R  (t)) beinhalten Zeit- und Risikopräferenzen der Kapitalmarktteilnehmer Erwartungen der Kapitalmarktteilnehmer Zinssatz i für sichere Anlagen Marktwert einer in t = 1 mit Sicherheit erzielten Geldeinheit

55 5.55 Marktwertmaximierung (4) Wertadditivität n Kurzfristig wirksame Entscheidungen betrachtet Marktwerte der in t = 1 anfallenden Überschüsse n Zugrundegelegte Bewertungsfunktion “Wertadditivität”

56 5.56 Beispiel Zustand  1  2  3 Überschuss Ü(  ) Bewertungsfaktor R  0,3 0,25 0,25

57 5.57 Marktwertmaximierung (5) n Interpretation der Bewertungsfaktoren n Time State Preference-Modell Einperiodiges Portefeuille eines Investors Vermögen V Finanztitel j = 1,…,J Investor maximiert unter der Nebenbedingung Für den Konsum gilt:

58 5.58 Marktwertmaximierung (6) Lagrange-Funktion: Bedingungen erster Ordnung: Definiert man nun dann folgt

59 5.59 Lösungsstruktur analog zu jener bei Sicherheit Verwendung von Marktwerten der Stück-DB statt sicherer Stück-DB Produkt mit höchstem spezifischen Marktwert des Stück-DB wird produziert Marktwertmaximierung (7) n Struktur des optimalen Produktionsprogramms Nur Zahlungsüberschüsse können angesetzt werden Stückdeckungsbeiträge sollen stets zahlungswirksam sein Nur zahlungswirksame Fixkosten können relevant sein Fixkosten irrelevant

60 5.60 Beispiel Produkt 1 2 DB je zu 50% 10 oder Stunden/Stk 5 5 Optimales Programm 280 Stück Produkt 1 Fixkosten = 0 Kapazität: Stunden R(  1 ) = R(  2 ) = 0,4 Sicherer Zins = 25% Marktwerte

61 5.61 R(  1 ) = 0,6 R(  2 ) = 0,2 Sicherer Zins = 25% Beispiel... Marktwerte Optimales Programm Ausschließliche Produktion von Produkt 2

62 5.62 Marktwermaximierung (8) n Diversifikationsüberlegungen im Rahmen der Marktwertmaximierung (Risikoreduzierung) n In Marktwerten implizit andere Diversifikationsaspekte enthalten, die sich in Korrelation zu bestimmten Marktfaktoren manifestieren ... zustandsspezifische Eintrittswahrscheinlichkeiten n Erwartetes Erfolgsniveau wird korrigiert um Risikoterm, der Korrelation zu einem Marktfaktor widerspiegelt. Marktfaktor von Bewertungsfaktoren des gesamten Kapitalmarkts abhängig

63 5.63 Virtuelle Marktwertmaximierung (1) n Wenn das Produktionsprogramm direkt am Kapitalmarkt gehandelt werden kann, übernimmt der Kapitalmarkt die Risikodiversifikation n Handelbarkeit des Produktionsprogramms ist jedoch die Ausnahme Kann der Kapitalmarkt dennoch genutzt werden, um Risiken des Produktionsprogramms zu diversifizieren? Portefeuille aus vielfältigen Finanztiteln zusammenstellbar Produktionsprogramm kann von Aufgaben “entlastet” werden Unternehmung maximiert virtuellen Marktwert

64 5.64 Virtuelle Marktwertmaximierung (2) n Virtuelle Marktwertmaximierung Notwendige Bedingungen: Spanning und Competitivity n Argument Angenommen, das Unternehmen realisiert optimales Produktionsprogramm nach Erwartungsnutzenmaximierung Dann gibt es Verbesserungsmöglichkeit wie folgt  Realisation des marktwertmaximalen Programms PM  Es gibt ein Portefeuille, welches die Überschüsse von PM dupliziert zu Gesamtpreis des Wertes von PM (Spanning)  Leerverkauf dieses Portefeuilles zum Wert von PM bei Verlust der Überschüsse aus PM  Leerverkaufserlös des Wertes von PM wird für Kauf eines Portefeuilles verwendet, das Überschüsse des ursprünglichen Programms PE dupliziert; Mittelbedarf in Höhe des Wertes von PE  Am Periodenende gleiche finanzielle Position wie vorher  Am Periodenbeginn positiver Betrag in Höhe der Wertdifferenz > 0

65 5.65 Beispiel n Fortsetzung Logarithmische Nutzenfunktion ln(  ) Fixkosten = 0  0 = 0 Produkt12 DBje zu 50% 10 oder Stunden/St55 Kapazität: Stunden Erwartungsnutzenmaximales Programm:

66 5.66 Beispiel... n Überschüsse am Periodenende Bewertungsfaktoren am Kapitalmarkt Marktwertmaximales Programm: nur Produkt 1 mit

67 5.67 Beispiel... Am Kapitalmarkt zwei Finanztitel n = 1, 2 mit Überschüssen ü n (  ) Duplizierung der Überschüsse von PM mittels Stückzahlen Erwerb von 700 Stück des risikobehafteten Titels 2 Geldanlage  0,8 = zum Zinssatz von 25% Leerverkauf: Verschuldung in Höhe von und Leerverkauf des unsicheren Papiers im Umfang von 700 Stück Leerverkaufserlös

68 5.68 Beispiel... n Duplizierung der Überschüsse von PE mittels Stückzahlen Erwerb von 408,33 Stück Titel 2 Geldanlage × 0,8 = Mittelbedarf Realisation PM + Leerverkauf Portefeuille 1 + Erwerb Portefeuille 2: Periodenende Periodenbeginn zusätzliche Mittel Sichere Investition bringt

69 5.69 Virtuelle Marktwertmaximierung (3) Zusammenfassung n Maximierung des virtuellen Marktwerts möglich n Fixkosten und Anfangsvermögen sind irrelevant n Anwendung eines Separationstheorems Politik auf der Ebene der Unternehmung gemäß einer a priori bekannten Zielsetzung bestimmt unabhängig von individuellen Konsumpräferenzen


Herunterladen ppt "Entscheidungs- rechnungen bei Unsicherheit © Ewert/Wagenhofer 2014. Alle Rechte vorbehalten!"

Ähnliche Präsentationen


Google-Anzeigen