Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Logfileanalyse Prof. Dr. Eduard Heindl. Elemente einer Logfilezeile IP-Adresse des Clients Identit ä t des Clientrechners (normalerweise nicht verf ü

Ähnliche Präsentationen


Präsentation zum Thema: "Logfileanalyse Prof. Dr. Eduard Heindl. Elemente einer Logfilezeile IP-Adresse des Clients Identit ä t des Clientrechners (normalerweise nicht verf ü"—  Präsentation transkript:

1 Logfileanalyse Prof. Dr. Eduard Heindl

2 Elemente einer Logfilezeile IP-Adresse des Clients Identit ä t des Clientrechners (normalerweise nicht verf ü gbar) Identit ä t des Benutzers (nur bei Authentifikation verf ü gbar) Sekundengenauer Zeitpunkt des Abrufs (Serverzeit) Erste Zeile der http Clientanfrage Status der Serverantwort Dateigr öß e in Bytes

3 Combined Log Format Referer, letztes Dokument im Browser des Besucher Domain von der die Seite abgerufen wurde Browser des Besuchers Betriebssystem des Besuchers [01/Apr/2002:15:04: ] GET / HTTP/ G&hl=de&btnG=Google-Suche&meta=lr%3Dlang_de Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

4 Warum Kennziffern Websites müssen sich lohnen Nur gute Websites lohnen sich Kundengerechte Websites sind gute Websites Controlling der Kundenzufriedenheit durch Kennziffern

5 Klassische Webstatistik MessgrößeProblem UmsatzNur bei reinen E-Shops sinnvoll PageViews (PV)Abhängig von der Auffindbarkeit SitzungsdauerAbhängig von Internetanbindung HitsAbhängig vom Webdesign

6 Anforderung an Kennziffern Aussagekräftig Unabhängig von Zusatzbefragung Einfach zu ermitteln Keine aufwendige Technik Überschaubare Fehlerquellen Statistisch signifikant Auch auf Einzeldokumente anwendbar

7 Pageimpression AdImpression "AdImpressions sind der messbare Werbemittelkontakt. Sie bezeichnen die Anzahl der von den Clients der Nutzer abgerufenen (requested) Werbemittel vom Server eines Werbetr ä gers oder anderen AdServers." (dmmv) Pageimpression PI Eine Internetseite im Browser ~ AdImpression Pageview PV Abruf einer HTML Seite vom Server (nicht Aussagekräftig)

8 Frame Frameseiten haben weniger PI als PV

9 Usersession Usersession = Visit Visit Zusammenhängender Nutzungsvorgang, Besuch auf der Internetsite View Time Nutzungsdauer, keine exakte Definition verfügbar (dmmv)

10 Erkenntnisse aus Abweichungen Flut der Anfragen

11 Marketingerfolg Beispiel einer Marketingkampagne mit Werbebriefen

12 Seitentypen Entry-, Brücken- und Exitpage

13 In-Out Analyse

14 Exit-Page Normale Ursachen Letzte Seite in einem Bestellprozess Linkliste, Angebot eines wichtigen externen Links Struktureller Abschluss etwa Z im Lexikon Newsseite Seite zum Ausdrucken Glossar Kanalwechsel, z.B. Ansprechpersonen, Kontaktformular

15 Exit-Page Problematische Ursachen Keine internen Links vorhanden Frameunterseiten, die isoliert gesehen werden (Externer Einstieg) Lange Ladezeit Seite hat unerwarteten Inhalt Layout problematisch z.B. zu kleine Schrift Unübliches Datenformat, z.B. Postscript

16 Berechnung der Kennziffern

17 Nützliche Kennziffern KennzifferBedeutung In/PV Einstiegseite/Seitenabruf Suchmaschinen, Externe Links Out/PV Letzte Seite/Seitenabruf Seitenqualität, Ladezeitprobleme Only/PV Einzige Seite/Seitenabruf Suchmachinentext, Seiteninhalt

18 Neue Kennziffer: Fav/PV Annahmen: Gute Seiten werden von Besuchern in die Favoriten aufgenommen (unter Netscape: Bookmark) Je häufiger von verschiedenen Besuchern ein Favorit gesetzt wird, um so besser das Dokument

19 Favicon im Browser Favicon von Google Standardicon

20 Das Favicon Das File favicon.ico wird immer vom Webbrowser (IE5 und höher) vom Webserver angefordert, wenn der Besucher ein Lesezeichen setzt. Favicon/Seitenabruf: Kennziffer, die ermittelt, ob ein Besucher Interesse an der Webseite (Website) hat.

21 Messverfahren Im Logfile werden alle Serveranfragen protokolliert, auch der Faviconabruf Logfileauswertung mit Statistikprogramm (z.B. websuxess) Bestimmung der Abrufe des Files favicon.ico Zeitabhängig Seitenbezogen

22 Technische Probleme Netscape und Gecko Browser rufen das File favicon.ico bei jedem Seitenabruf auf -> Filtern auf IE-Browser Favicon wird immer aus dem lokalen Verzeichnis geholt -> File in allen Verzeichnissen abspeichern Bezugsseite kann nur durch Pfadanalyse ermittelt werden (rechenaufwendig)

23 Tageszeitabhängigkeit Bestimmung des Faviconabrufs, relativ zu den Seitenaufrufen Je später der Abend, um so wahr- scheinlicher wird ein Lesezeichen gesetzt

24 Websitequalität Analyse Relaunch Favicon/Besucher Vorher ~1% Fav/PV Nachher ~2% Fav/PV Relaunch war erfolgreich

25 Webseitenqualität Auswertung Website Solarserver.de Zeitraum: 1. Quartal 2003 Datenbasis: Ca Seitenaufrufe Lehre: Branchenverzeichnis ist beliebt Die Top Seiten

26 Suchmaschinen Relevante Suchmaschinen Relevante Suchworte

27 Nutzung der Suchmaschinen

28 Externe Links

29 Quelle der Besucherströme Suchmaschinen Externe Links Favoriten s Manuelle Eingabe

30 Favoriten Lesezeichen = Bookmark = Favorit Bei Explorer: Abruf des Files favicon.ico Achtung: Netscape 7 ruft das File immer ab

31 Pfadverfolgung Wenig gleiche Pfade Lange Pfade von Interesse Analyse nach Zielelementen Einzelauswertung mühsam

32 Pfadlänge Längere Besuche sind wünschenswert Grund der längeren Pfade verstehen Pogosticking vermeiden

33 Zieldokumente Jede Website hat Targetdokumente Bestellabschluss Newsletterabo

34 Relevante Hyperlinks

35 Robotsfile Immer wenn eine Suchmaschine kommt wird das File robots.txt abgerufen

36 Ladezeit Zuerst wird das HTML-File geladen Bilder werden in der Reihenfolge im HTML Text nachgeladen Anzahl der abgerufenen Bilder gibt Einblick über Besucherverhalten

37 Fehleranalyse Datenquelle Statistik Signifikanz Grosse Ereigniszahl Längere Zeiträume Einfache Betrachtung Abhängigkeiten erkennen

38 Schiefe Statistik - Ursachen Suchrobots nicht herausgefiltert Sonderfunktion im Browser nötig Viele Nutzer außerhalb der Zielgruppe (z.B. Mitarbeiter, Sprachraum) Sitzungslänge falsch eingeschätzt Serverfehler falsch einbezogen (404-Fehlerseiten) Proxyserver Bildschirmauflösung Automatische Verknüpfung von Seiten (Frames) Änderung von Dokumentadressen (Seitenumzug) Inhalt – URL Relation falsch interpretiert

39 Proxyserver Normalerweise mit Meldung 304 zu erkennen Abhängig von HTTP Version Abhängig von Proxyeinstellung Lokaler Cache wird nicht erkannt

40 Pseudobesucher Interne Besucher (Startseite) Robots Downloads Linkchecker Störer (DDOS) Hacker Frameeinblendungen

41 Sitedownload

42 Dynamische Seiten Erzeugung durch Content Management System Erzeugung durch Shopsoftware Besucherindividuell Profilabhängig

43 Dynamische Seiten

44 Besuchszeiten Tagesverlauf Wochenverlauf Jahresverlauf Monat? Sehr viele Sondereffekte!

45 Zyklenvergleich

46 Statuscode Status aus dem HTTP Header 200 – alles ok 300 – kleine Umleitung 400 – dumme Frage 500 – Server kaputt

47 IVW Informationsgemeinschaft zur Feststellung der Verbreitung von Werbeträgern e.V. Registrierte Websites werden analysiert Jeder kann die Resultate abrufen Relativ teuer Nützlich für alle Banner-Werbetreibenden

48 Service aus den USA Arbeitet mit Browserplugin Analyse fremder Websites möglich Teilweise schiefe Statistik Nur ähnliche Websites vergleichbar

49 Alexa - IVW Problematik der Alexaabfrage

50 Seitenzähler ASP- Webstatistik Beispiel Hitbox

51 Trends Alle Bevölkerungsgruppen nutzen das Web Die durchschnittliche Nutzungsdauer wächst Die Internetzugänge werden schneller (DSL) Wachsende Bereitschaft zu Online Transaktionen Leistungsfähige Endgeräte Moderne Browser Multimediale Rechner Höhere Bildschirmauflösung Erfahrene Internetnutzer Heavy User

52 Vielen Dank für Ihre Aufmerksamkeit Weitere Informationen:


Herunterladen ppt "Logfileanalyse Prof. Dr. Eduard Heindl. Elemente einer Logfilezeile IP-Adresse des Clients Identit ä t des Clientrechners (normalerweise nicht verf ü"

Ähnliche Präsentationen


Google-Anzeigen