Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Tutorat Statistik II im SS 09 Zufallseffekte & Messwiederholung

Ähnliche Präsentationen


Präsentation zum Thema: "Tutorat Statistik II im SS 09 Zufallseffekte & Messwiederholung"—  Präsentation transkript:

1 Tutorat Statistik II im SS 09 Zufallseffekte & Messwiederholung

2 Memo: zweifaktorielle ANOVA Was fällt euch noch ein?

3 Memo oVerfahren zur Prüfung von Gruppen- unterschieden in Bezug auf mehrere UVs oErweiterung der einfak. ANOVA um den Interaktionseffekt bzw. die -quadratsumme oZwei Typen von Effekten/Quadratsummen: Haupt- und Interaktionseffekte oAuswertung von Wechselwirkungen (Interaktionen) zwischen den UVs oInteraktionstypen: ordinal, disordinal, hybrid oInterpretation: Über Trends in beiden Diagrammen

4 Thema: Zufallseffekte & Messwiederholung

5 Gliederung I.Feste vs. Zufallseffekte II.Messwiederholung einfaktoriell III.Messwiederholung mehrfaktoriell

6 I.Feste vs. Zufallseffekte

7 Übersicht ANOVA

8 Feste Effekt vs. Zufallseffekte Definition: Man spricht von festen Effekten, wenn alle möglichen bzw. alle interessierenden Stufen eines Faktors im Versuchsplan realisiert werden. Beispiele: Geschlecht, Therapieform, Hautfarbe Definition: Man spricht von Zufallseffekten, wenn einen Faktor sehr viele Abstufungen hat und für eine Untersuchung zufällig einige davon ausgesucht werden. Beispiele: Persönlichkeitseigenschaften, Alter, Universität

9 Feste Effekt vs. Zufallseffekte Zentraler Unterschied: Generalisierbarkeit (externe Validität) Bei festen Effekten ist keine Verallgemeinerung der inferenzstatistischen Prüfung auf nicht realisierte Stufen der UV möglich: Wenn ich Verhaltenstherapie und Gesprächstherapie als Faktor in meinem Versuchsplan habe, kann ich bei der Interpretation der Ergebnisse keine Aussagen über Psychotherapie im Allgemeinen tätigen.

10 Um Psychotherapie im Allgemeinen in Bezug auf meine AV bewerten zu könne, gibt es zwei Möglichkeiten: 1.Ich realisiere alle Stufen des Faktors Psychotherapie -> ANOVA mit festen Effekten 2.Ich wähle aus allen Therapieformen eine ausreichend große Zahl zufällig aus -> ANOVA mit zufälligen Effekten Nur eine Varianzanalyse mit zufälligen Effekten erlaubt intervallskalierte Variablen – mit theoretisch unendlich vielen Abstufungen – einzubeziehen. Dennoch kann eine Zufallsfaktor grundsätzlich auch Nominal- bzw. Ordinalskalenniveau haben. Feste Effekt vs. Zufallseffekte

11 Unterschiede Feste EffekteZufallseffekte oAlle möglichen / interessierenden Stufen eines Faktors werden realisiert. oEinige Stufen werden aus vielen möglichen Stufen ausgesucht. oKeine Generalisierbarkeit auf nicht realisierte Stufen. oGeneralisierbarkeit ist gegeben. oDie Summe der Effekte ist Null. oDie Summe der Effekte muss nicht Null sein. oH 0 : Alle Effekte sind Null bzw. Die Varianz der Effekte ist Null. α j = 0 (für alle j) od. σ²(α) = 0 oH 0 : Die Varianz der Effekte ist Null. σ²(α) = 0

12 Der F-Test bei der 2-faktoriellen ANOVA mit Zufallseffekten

13 Liegt ein Faktor mit festem Effekt und ein Faktor mit Zufallseffekt vor, spricht man von einer ANOVA mit gemischten Effekten. Wichtig: Es muss bei der Berechnung der F-Tests beachtet werden, welcher Faktor als Zufallsfaktor eingegeben wird. Die folgende Berechnung geht davon aus, dass Faktor B der Zufallsfaktor ist. Der F-Test bei der 2-faktorielle ANOVA mit gemischten Effekten

14 zufällig fest

15 Faktor AFaktor BAxB A fest, B fest A zufällig, B zufällig A fest, B zufällig Prüfvarianzen der zweifaktoriellen ANOVA

16 Zusammenfassung oDefinierte Anzahl von Stufen fester Faktor oBeliebige Anzahl von Stufen Zufallsfaktor oDie Art des Modells (feste Effekte, zufällige Effekte, gemischte Effekte) beeinflusst die Prüfvarianz im Nenner des F-Bruchs: Feste Effekte: MS with Zufällige Effekte: MS AxB Gemischte Effekte: Für den festen Faktor MS AxB, für den zufälligen MS with Herleitung: Leonhart, Kapitel 16

17 II.Messwiederholung einfaktoriell

18 ANOVA mit Messwiederholung Wichtige Anwendungsmöglichkeiten für Messwiederholung: -Messwiederholung im engeren Sinn: Die selbe AV wird mehrfach erhoben ( Veränderungsmessung) -Eine AV wird durch unterschiedliche Verfahren (z.B. Selbstbeobachtung und Fremdbeobachtung) erhoben ( Vergleich der Verfahren) -Personen aus zwei (oder mehreren) Stichproben werden einander zugeordnet ( matching) Welches Verfahren für Messwiederholung kennt ihr bereits? Den t-Test für abhängige Stichproben.

19 Einfaktorielle ANOVA mit Messwdh. Eine einfaktorielle ANOVA mit Messwiederholung kann als 2-faktorielle ANOVA mit gemischten Effekten betrachtet werden: Faktor A: Messzeitpunkt (fester Effekt) Faktor B: Versuchsperson (Zufallseffekt) Der Personenfaktor (B) erfasst Unterschiede zwischen den Versuchspersonen, der Messwiederholungsfaktor (A) Unterschiede zwischen den Messzeitpunkten. Unterschiede zwischen den Versuchspersonen sind irrelevant; es interessiert der Unterschied zwischen den einzelnen Messzeitpunkten.

20 Vorteile & Nachteile 1.Teststärker als nicht- messwiederholte ANOVA, da Fehlervarianz reduziert wird 2.weniger Personen nötig durch wiederholte Messung bei denselben Personen 1.Sphärizitätsannahme (Zirkularitätsannahme): oVarianzen und Kovarianzen unter den einzelnen Faktorstufen homogen oBei einer Verletzung: Greenhouse-Geisser- Korrektur. 2.Sequenzeffekte: Reihenfolge der Testung hat Einfluss 3.Bei fehlenden Daten zu einem Messzeitpunkt muss die Person komplett ausgeschlossen werden. N sinkt

21 Quadratsummenzerlegung SS total = SS between + SS within SS total = SS between + SS treatment + SS error oVarianzanteile oSS between : zwischen Personen zum selben Messzeitpunkt ointeressiert nicht wird nicht für den F-Test verwendet oSS within : innerhalb derselben Personen zu unterschiedlichen MZPs oauf Treatment zurückzuführen SS treatment oFehlervarianz SS error

22 Formeln

23 Rechenbeispiel Messzeitpunkt Pat-Nr.vor Th.nach Th.6 Monate

24 Mittelwerte Messzeitpunkt Pat-Nr.vor Th.nach Th.6 Monate , , , ,67 24,751013,2516,00

25 Meßwiederholte einfaktorielle ANOVA: Vorgehen 1.Hypothesen 2.Varianzzerlegung: a)Rand- und Gesamtmittelwerte bilden b)Quadratsummen berechnen c)Freiheitsgrade berechnen d)Mittlere Quadratsummen berechnen 3.F-Bruch bilden 4.Vergleich des emp. F-Werts mit krit. F-Wert

26 p >.05, der Mauchly-Test ist also nicht signifikant Demnach ist die Sphärizität (Zirkularität) ist also gegeben.

27 Da die Sphärizitätsannahme nicht verletzt ist, kann die erste Zeile verwendet werden. p < 0.05, d.h. Der Messzeitpunkt beeinflusst das Testergebnis.

28 III.Messwiederholung mehrfaktoriell

29 Messwiederholung 2-faktoriell oUnvollständige Messwiederholung: Nur ein Faktor der ANOVA ist ein Messwiederholungsfaktor. Beispiel: Effekte von Verhaltenstherapie, Gesprächstherapie und Psychoanalyse nach einer Woche, einem Monat und einem Jahr. oVollständige Messwiederholung: Beide Faktoren sind Messwiederholungsfaktoren. Beispiel: Die Befindlichkeit von Schmerzpatienten wird im Verlauf einer Woche dreimal am Tag erhoben. Faktor 1 erfasst hier die Veränderung über den Tag hinweg, Faktor 2 den Einfluss des Wochentags.

30 Unvollständige Messwiederholung WocheMonatJahr VTn 1 GTn 2 PAn 3

31 Vollständige Messwiederholung MorgenMittagAbend Montag N gesamt Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

32 Vielen Dank für eure Aufmerksamkeit!

33

34

35

36

37 Arbeitsblatt 4 1.Erläutern Sie kurz den Begriff Zufallseffekt. 2.Welchen Vorteil kann es haben, einen Faktor als Zufallseffekt zu kodieren? Nennen sie ein Beispiel für eine entsprechende Fragestellung. 3.Mit welchen mittleren Quadratsummen (MS) werden die drei F-Brüche in einer 2-faktoriellen ANOVA mit Zufallseffekten auf Faktor B und festen Effekten auf Faktor A gebildet?

38 Ergebnis 1.Wenn ein Faktor (theoretisch) unendlich viele Abstufungen hat und für eine Untersuchung zufällig einige davon ausgesucht werden, spricht man von Zufallseffekten. 2.Wenn ein Faktor als Zufallsfaktor betrachtet wird, so ist eine Generalisierung der Ergebnisse auf andere (nicht untersuchte) Stufen möglich. 3.->

39 Arbeitsblatt 4 4.Welche Vor- und Nachteile hat eine ANOVA mit Messwiederholung? 5.Sie berechnen eine ANOVA und stellen dabei fest, dass die Sphärizitätsannahme verletzt ist. Wie können Sie nun weiter vorgehen?

40 Ergebnisse 4. Vorteile: Es werden weniger Versuchspersonen benötigt, da dieselben Vpn mehrmals getestet werden. Höhere Teststärke (Power), da die Fehlervarianz verringert wird. Die Varianz zwischen Vpn ist eliminiert, da man die Vpn nur mit sich selbst vergleicht. Nachteile: Sphärizitätsannahme (Zirkularitätsannahme) Sequenzeffekte (Reihenfolge der Testung kann Einfluss haben) Fehlende Daten zu einem Messzeitpunkt führen dazu, dass eine Person komplett (zu allen Messzeitpunkten) ausgeschlossen werden muss. 5. Wenn eine Korrektur der Freiheitsgrade (nach Greenhouse- Geisser) erfolgt, darf der F-Test dennoch interpretiert werden.


Herunterladen ppt "Tutorat Statistik II im SS 09 Zufallseffekte & Messwiederholung"

Ähnliche Präsentationen


Google-Anzeigen