Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Technische Universität München Marktforschung in der Forstwissenschaft und Holzwirtschaft.

Ähnliche Präsentationen


Präsentation zum Thema: "Technische Universität München Marktforschung in der Forstwissenschaft und Holzwirtschaft."—  Präsentation transkript:

1 Technische Universität München Marktforschung in der Forstwissenschaft und Holzwirtschaft

2 Technische Universität München Literatur C. Fantapié Altobelli; S. Hoffmann (2011): Grundlagen der Marktforschung. UVK Verlag, Konstanz. G. Grunwald; B. Hempelmann (2013): Übungen zur angewandten Marktforschung. Oldenbourg Verlag, München Endrik Lengwenat

3 Technische Universität München Gliederung Grundlagen der Marktforschung Marktdaten eruieren und analysieren Prognoseverfahren –Excel-Beispiel Preisforschung –Conjoint-Analyse Übung Endrik Lengwenat

4 Technische Universität München Definition und Relevanz Marktforschung ist die systematische Sammlung, Aufbereitung, Analyse und Interpretation von Daten über Märkte und Marktbeeinflussungsmöglichkeiten zum Zweck der Informationsgewinnung für Marketing- Entscheidungen. (Böhler 2004, S. 19) Endrik Lengwenat

5 Technische Universität München Definition und Relevanz Praktische Relevanz: Marktforschung als Grundlage von Entscheidungsprozessen. –Kunden- –Markt- –Konkurrenzanalysen Wissenschaftliche Relevanz: Untersuchungen von Konsumentenverhalten Endrik Lengwenat

6 Technische Universität München Marketing-Dreieck Endrik Lengwenat Markt Konkurrenz Anbieter Nach- frager

7 Technische Universität München Marktdaten eruieren und analysieren Endrik Lengwenat

8 Technische Universität München Marktdaten eruieren und analysieren Daten eruieren  Befragungsmethodik –Reliabilität (Zuverlässigkeit). Die Reliabilität ist ein Maß für die Reproduzierbarkeit von Messergebnissen –Objektivität (Wiederholungsgenauigkeit) –Validität „das Maß in dem das Messinstrument tatsächlich das misst, was es messen sollte Datenanalyse  Hypothesentests –Deskriptiv –Zusammenhänge Dokumentation Endrik Lengwenat

9 Technische Universität München Die Prognose als Zeitreihenanalyse Prognosewerte werden durch die Verarbeitung von Vergangenheitswerten und Gegenwartswerten gewonnen. „Der Traum, die Zukunft hervorzusagen, ist so alt wie die Menschheit selbst“ (A. Einstein) „Prognosen sind schwierig, besonders, wenn sie die Zukunft betreffen“ (W.Churchill) Endrik Lengwenat

10 Technische Universität München Definition und Fragen Was ist eine Prognose, was ein Trend Wo werden sie angewandt und zu welchem Zweck Relevanz für den Forstsektor Welche Probleme können bei Prognosen auftreten

11 Technische Universität München Prognose als Teil der „Planung“ Planung: ein auf die Zukunft gerichteter geistiger Prozess, in dem künftiges Geschehen antizipiert und überschaubar gemacht werden soll Teilprozesse der Planung: Zielanalyse, Problemanalyse, Prognose, Bewertung, Entscheidung Prognose ist im Planungsprozess ein methodischer Teil  Aus möglichst realitätsnaher Darstellung der Vergangenheit Aussagen für die Zukunft treffen  „Exakte“ Gesetzmäßigkeiten verdeutlichen

12 Technische Universität München Anforderungen an Prognosen 1. Modelle sollen vereinfachende Abbilder realer Tatbestände liefern (Isolation und Abstraktion). 2. Trotz aller Vereinfachung soll eine Strukturgleichheit bzw. Strukturähnlichkeit zwischen dem Modellsystem und dem Realsystem gewahrt bleiben. 3. Sie müssen logisch sein - also in sich widerspruchsfrei sein. (objektives Kriterium)

13 Technische Universität München Anwendungsgebiete Wettervorhersage/ -prognose Arbeitslosenzahlen BWL: –Forschung und Entwicklung –Investitionen –Produktion - Bedarfsermittlung –Absatz –Gesamtplanung

14 Technische Universität München Beispiel einer Prognose „Die Grenzen des Wachstums“ Meadows 1972 Studie zur globalen Entwicklung bis 2100 auf den Sektoren Bevölkerungswachstum, Industrieoutput, Nahrungsmittelproduktion, Rohstoffverbrauch und Umweltverschmutzung Auftraggeber: Club of Rome; Bearbeiter: MIT (Dennis und Donella Meadows, Jorgen Randers), Jay W. Forresters Institut für Systemdynamik

15 Technische Universität München Beispiel einer Prognose Prognosen aus „Die Grenzen des Wachstums“ Meadows, 1972

16 Technische Universität München Beispiel einer Prognose 20 Jahre nach der ersten Prognose im Auftrag des Club of Rome erstellte Meadows eine Wiederholung der Simulation auf Grundlagen neuer Erkenntnisse sowie neuer Annahmen. Diese wurden 1992 in „Die neuen Grenzen des Wachstums“ („beyond the limits“) veröffentlicht.

17 Technische Universität München Beispiel einer Prognose Modifizierte Verläufe aus „Die neuen Grenzen des Wachstums“ Meadows, 1992/Szenario 5 Unter Änderung der Annahmen: Verdoppelung der Ressourcen Emissionsbekämpfung Ertragsförderung Erosionsschutz

18 Technische Universität München Beispiel einer Prognose Weitere Szenarien mit verschiedenen Maßnahmen/ Einschränkungen Szenario 10Szenario 12

19 Technische Universität München Einteilung der Prognoseverfahren Nach Dr.ing. Elske Linß

20 Technische Universität München Qualitative/ Subjektive Verfahren Keine mathematisch-statistische Verfahren werden angewandt. Menschliche Erfahrungen/ Intuition sind Grundlage der „Prognose“ Einzel- oder Gruppenurteile (unabhängig/ abhängig) Beispiel: Gruppenurteil abhängig: Ermittlung von Planzahlen in Gruppendiskussionen/Brainstorming unabhängig: Ermittlung von Planzahlen durch strukturierte Gruppenbefragung (Bsp. Delphi-Methode)

21 Technische Universität München Qualitative/ Subjektive Verfahren Methoden der Datenerhebung bei subjektiven Verfahren: Delphi-Methode: 1. Verwendung eines formalen Fragebogens 2. anonyme Einzelantworten 3. Ermittlung einer statistischen Gruppenantwort 4. Information der Teilnehmer über die Gruppenantwort 5. Wiederholung der Befragung Informationen: Michael Häder; Delphi-Befragungen: Ein Arbeitsbuch. VS Verlag für Sozialwissenschaften, Wiesbaden 2009

22 Technische Universität München Extrapolierende Verfahren Zeitreihenanalyse Analyse einer bestimmten Größe mit mathematisch- statistischen Methoden –Untersuchung hinsichtlich Gesetzmäßigkeiten aus der Vergangenheit –Übertrag dieser Gesetzmäßigkeiten in die Zukunft Betrachtung der untersuchten Größen = zeitabhängig  Ursachenforschung bleibt außen vor!

23 Technische Universität München Zeitreihen Die Zeitreihe (y t ) setzt sich zusammen aus: y t = f (u t, z t, s t, r t ) –der Trendkomponente (u t ) = gibt die grundsätzliche Entwicklungsrichtung an (Zeitreihe kann mit fallenden, steigenden oder ohne Trend verlaufen) –der zyklischen Komponente (z t ) = langfristige Schwankung um den Trend (Konjunktur) –Der Saisonkomponente (s t ) = kurzfristige Bewegung um den Trend und Zyklus (Umsatzschwankungen) –Und der irregulären Komponente (r t ) = zufällig auftretende Störgröße Informationen: Vorlesungsunterlagen Mike Hüftle; „Modelle und Methoden der Zeitreihenanalyse“. 2006

24 Technische Universität München Zeitreihen Es sollen zeitlich regelmäßig anfallende Bewegungen einer Zeitreihe aufgezeigt werden, um so ein Fortschreiben in der Zukunft für Prognose- und Planungszwecke zu ermöglichen. Voraussetzung = eine ausreichend lange Zeitreihe Treten alle Komponenten gleichzeitig auf, so ist die Analyse einer Komponente sehr erschwert. Zeitreihe mit saisonalen Schwankungen müssen auf rechnerische Weise von der saisonalen Komponente bereinigt werden.

25 Technische Universität München Zeitraum von Prognosen Je länger eine Prognose in die Zukunft geht, desto ungenauer/ ungewisser wird sie Die Eintrittswahrscheinlichkeit der Prognose verringert sich, je länger der Planungszeitraum in der Zukunft liegt Bezogen auf Unternehmen: –Je größer ein Unternehmen, desto langfristiger oftmals die Prognosen. –Je konsumnäher, desto kürzer der Planungszeitraum.  zielorientierte Datenquellen und Zeiträume wählen

26 Technische Universität München Graphische Verdeutlichung Zurückliegende Daten t = 0 Zukünftige, prognostizierte Daten Ungewissheit der Prognose

27 Technische Universität München Verfahren der Trendanalysen 1. Einfache Mittelwertbildung 2. Verfahren der gleitenden Durchschnitte 3. Methode der kleinsten quadratischen Abweichungen 4. Exponentielle Glättung erster Ordnung 5. Exponentielle Glättung höherer Ordnungen

28 Technische Universität München Einfache Mittelwertbildung

29 Technische Universität München Verfahren der gleitenden Durchschnitte

30 Technische Universität München Beispielrechnung 1. Berechnung der gleitenden Durchschnitte: M 3 (g=3) ? M t für g= ,3170,3171, M t für g= ,4174,2179,2187 Verfahren der gleitenden Durchschnitte xixi M 3 (g=3) = 1/3 * ( ) = 169

31 Technische Universität München Beispielrechnung 2. Ableitung der Prognosewerte: x 12 (g=3) ? Verfahren der gleitenden Durchschnitte x 12 (g=3) = 1/3 * ( ,3) = 202, xixi x t (k) für g= ,3202,4200,3 x t (k) für g= ,8197,9201,6

32 Technische Universität München Verfahren der gleitenden Durchschnitte Gleitende Durchschnitte eignen sich zur Glättung von Zeitreihen. Als Prognoseverfahren sollten sie nur bei Zeitreihen ohne Trend zur Anwendung kommen.

33 Technische Universität München Methode der kleinsten quadratischen Abweichungen Unter der Annahme der linearen Zeitabhängigkeit einer Größe, wird der Trend durch eine Gerade beschrieben: y = ax + boder hierx t = a + b*t mita: Achsenabschnitt b: Steigungskoeffizient t: Periode Dabei werden a und b so bestimmt, dass die Summe der Abweichungsquadrate von der Trendlinie minimiert werden.

34 Technische Universität München Methode der kleinsten quadratischen Abweichungen Die Summe der Quadrate minimieren: t x

35 Technische Universität München Methode der kleinsten quadratischen Abweichungen Mathematische Lösung über partielle Differenziale. Einfacher: Graphische Lösung in Excel mit Ausgabe der Geradengleichung Das Verfahren wir häufig bei der Bestimmung eines Trends von Zeitreihen eingesetzt. Das Verfahren reagiert auf anhaltende Trendänderungen nur sehr langsam.

36 Technische Universität München Exponentielle Glättung erster Ordnung Lösung des Problems, dass die Methode der kleinsten quadratischen Abweichungen auf Trendänderungen nur sehr langsam reagiert: Anpassung der Trendbewegungen durch exponentielle Glättung. Ein Glättungsfaktor (0>α>1) gewichtet die Werte der zurück liegenden Perioden Je kleiner α, umso stärker werden die Perioden der Vergangenheit gewichtet und Zufallsschwankungen geglättet.

37 Technische Universität München Exponentielle Glättung erster Ordnung

38 Technische Universität München Exponentielle Glättung erster Ordnung Beispielrechnung: Der Vorhersagewert für den Erlös aus Holzverkäufen für 2011 lag im Jahre 2010 bei ,-€. In 2011 ist jedoch ein wirklicher Erlös von ,- € erzielt worden. Errechnen Sie bei einem Glättungsfaktor von 0,2 den Vorhersagewert für Wie sind die zurückliegenden Werte gewichtet? V 2012 : 200.‘ + 0,2 (250.‘ – 200.‘) = ,- €

39 Technische Universität München Kausale Prognosen Kausale Prognosen stellen eine Größe in Abhängigkeit von einer anderen dar. Für zwei Größen y, x gilt allgemein: y = f (x) Für die Prognose von y aus x sind zwei Konstellationen denkbar: 1) Wurde x beobachtet, kann nach k Perioden regelmäßig mit der Beobachtung von y gerechnet werden (Time lag):y (t + k) = f (x (t)) 2) y und x treten regelmäßig gleichmäßig auf, wobei x durch ein extrapolierendes Verfahren prognostiziert werden kann:y (t + k) = f (x (t + k))

40 Technische Universität München Kausale Prognosen Deterministische Prognosen: y und x stehen in Ursache-Wirkungs-Zusammenhang. Prognose unter sicherer Erwartung  eindeutige Prognose Stochastische Prognosen: Zusammenhänge zwischen Größen nicht eindeutig determiniert  Prognose unter Unsicherheit

41 Technische Universität München Kausale Prognosen Verwendung von einfachen Regressionsansätzen Lineare Einfachregression: zwei Größen (x und y) stehen in folgendem linearen Zusammenhang: y = a + b * x x = erklärende Größe y = erklärte Größe y

42 Technische Universität München Kausale Prognosen Verwendung von multiplen Regressionsansätzen Bei allen einfachen Regressionsansätzen wird die Größe y aus nur einem x erklärt. Deshalb wurde die Einfachregression zur multiplen Regression erweitert, bei der die erklärte Größe aus mehreren Größen erklärbar wird.

43 Technische Universität München Diskussion Größte Problematik: Einfache Prognosen basieren auf Fortschreibung zurückliegender Daten. Bei kausale Prognosen können die beschreibenden und die abhängige Variablen in der Vergangenheit enge korreliert haben. Aber Vorhersage berücksichtigt auch da keine Änderungen. Lebensdauer eines Gutes muss bekannt sein: Unterscheidung zwischen Erst-und Ersatzbedarf Notwendig: autonome Schätzung der Sättigungsgrenze (die sich langfristig ändern kann)

44 Technische Universität München Übungsaufgabe Lösen Sie die Excel-Aufgabe mit 1. Der einfachen Mittelwert-Berechnung 2. Der Methode der gleitenden Durchschnitte 3. Der Methode der kleinsten quad. Abweichungen 4. mit einer exponentiellen Glättung 1. Ordnung Lösen Sie die Aufgabe mathematisch und stellen Sie die Lösungen graphisch da.


Herunterladen ppt "Technische Universität München Marktforschung in der Forstwissenschaft und Holzwirtschaft."

Ähnliche Präsentationen


Google-Anzeigen