Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
1
Quantitative Merkmale
Statistik: Quantitative Merkmale
2
Metrische Merkmale Beispiel: 50 Rechnungsbeträge in der Elektroabteilung eines Einkaufszentrums (in Euro) 227 1848 462 1318 579 912 482 696 1631 536 979 718 799 740 371 576 655 660 800 750 949 478 566 538 658 788 878 1047 537 1226 781 654 593 896 719 1234 561 665 368 1973 267 618 756 711 836 602 943 348 1.3.04 PI Statistik, SS 2004
3
Metrisches Merkmal: Tabelle
Beispiel: Rechnungsbeträge in der Elektroabteilung eines Einkaufszentrums (in Euro) Klasse Häufigkeit 0-200 5 11 19 8 1 3 2 größer 1.3.04 PI Statistik, SS 2004
4
Metr. Merkmal: Histogramm
Beispiel: Rechnungsbeträge 1.3.04 PI Statistik, SS 2004
5
Histogramm Klassenhäufigkeiten: Häufigkeiten, mit der die Klassen der Merkmalsausprägungen besetzt sind Darstellung der Klassenhäufigkeiten als Flächen Größe der Fläche ist proportional zur Häufigkeit Am einfachsten sind Klassen gleicher Breite (dann ist Höhe proportional zu Häufigkeit) Histogramm (für stetige Merkmale) <-> Balkendiagramm (für diskrete Merkmale) 1.3.04 PI Statistik, SS 2004
6
„Histogramm“ in EXCEL Beispiel: Rechnungsbeträge 1.3.04
PI Statistik, SS 2004
7
Histogramm in EXCEL Teil der Analyse-Funktionen
Probleme und deren Lösung: Balken (vergl. Balkendiagramm) statt Flächen Anklicken eines Stabes -> Datenpunkt formatieren -> Optionen -> Abstandsbreite auf „0“ setzen Klassengrenzen werden als Klassenmitten angezeigt Bereich mit Klassenmitten erzeugen Diagramm anklicken -> als „Beschriftung der Rubrikenachse (X)“ den Bereich mit Klassenmitten angeben X-Achse anklicken -> Muster -> Hauptstriche auf „innen“ setzen -> Hilfsstriche auf „außen“ setzen -> 1.3.04 PI Statistik, SS 2004
8
Verbessertes Histogramm
Beispiel: Rechnungsbeträge 1.3.04 PI Statistik, SS 2004
9
Histogramm-Konstruktion
Ordne die n Beobachtungen nach steigender Größe, bestimme die Spannweite der Häufigkeitsverteilung. Zur Festlegung der Klassen unterteile die Spannweite in Intervalle gleicher Länge; die Zahl k der Klassen soll zwischen fünf und 20 liegen. Die Klassenmitten sollen „einfache“ Zahlen sein. Bestimme die Zahl der Beobachtungen jeder Klasse, d.s. die (absoluten) Klassenhäufigkeiten. Zeichne das Histogramm. Bei gleichen Klassenbreiten sind die Höhen der Flächen proportional den Häufigkeiten; bei ungleichen Klassenbreiten sind die Höhen proportional den Quotienten aus Häufigkeit und Klassenbreite. 1.3.04 PI Statistik, SS 2004
10
Zahl k der Klassen n √n 20 5 4 30 40 6 50 7 75 9 100 10 150 8 12 200 14 k so, dass k ≤ √n k soll nicht kleiner als 5 nicht größer als 20 sein 1.3.04 PI Statistik, SS 2004
11
Beispiele von Verteilungen
Rechnungsbeträge CO-Emission von PKWs Lebensalter Schäden durch Wirbelstürme (in Mio USD) 1.3.04 PI Statistik, SS 2004
12
Schäden durch Wirbelstürme
1.3.04 PI Statistik, SS 2004
13
Schäden durch Wirbelstürme
Klasse Kl.-Breite Häufigk't rel.Häufigk't Dichte 0 – 50 50 19 0,50 0,010000 50 – 100 4 0,11 0,002105 100 – 500 400 10 0,26 0,000658 1500 5 0,13 0,000088 38 1,00 Dichte: Relative Häufigkeit/Klassenbreite Dichtehistogramm: Fläche beträgt 1 1.3.04 PI Statistik, SS 2004
14
Schuh- und Körpergröße
Nach R. Hatzinger, 2003 1.3.04 PI Statistik, SS 2004
15
Charakteristika von Verteilungen
Beschreiben durch Kennzahlen wesentliche Eigenschaften der Verteilung Dazu gehören: Quantile, Minimum, Maximum Lagemaße Streuungsmaße Schiefe: charakterisiert Symmetrie Wölbung (Kurtosis): Vergleich von symmetrischer Verteilung mit Gauss‘scher Glockenform 1.3.04 PI Statistik, SS 2004
16
Populationskenngrößen
Analyse-Funktion in EXCEL Rechnungsbeträge Mittelwert 772,46 Standardfehler 50,10 Median 714,62 Modus 718,46 Standardabweichung 354,29 Stichprobenvarianz 125518,49 Kurtosis 3,29 Schiefe 1,60 Wertebereich 1746,15 Minimum 226,92 Maximum 1973,08 Summe 38623,15 Anzahl 50 1.3.04 PI Statistik, SS 2004
17
Lage- und Streuungsmaße
Lagemaße Mittelwert Median , getrimmter Mittelwert Modus Streuungsmaße Standardabweichung s Varianz s 2 Interquartilsabstand I Spannweite R 1.3.04 PI Statistik, SS 2004
18
Lagemaße Mittelwert: Median: nach der Größe geordnete Beobachtungen:
den Index i nennen wir den Rang von Median: wenn n=2m+1 ungerade (m ist Rang der mittleren Beobachtung): wenn n=2m gerade: 1.3.04 PI Statistik, SS 2004
19
Robuste Lagemaße Median: extreme Werte („Ausreißer“) haben keinen Effekt Getrimmter Mittelwert: Mittelwert von 80% der Beobachtungen, je 10% größte und kleinste Beobachtungen bleiben unberücksichtigt 1.3.04 PI Statistik, SS 2004
20
Quantil (Perzentil) Quantil der Ordnung p aus n Beobachtungen
x1, …, xn ist die Beobachtung x(r) mit Rang r = (n+1)p wenn (n+1)p keine ganze Zahl ist: Mittel der benachbarten Beobachtungen Runden des Ranges (n+1)p Beispiel: Rechnungsbeträge (50 Beobachtungen) Quantil der Ordnung 0.8 (oder 0.8-Quantil): Mittel aus Beobachtungen mit Rängen 40 und 41 1. Quartil oder 0.25-Quantil: Mittel aus Beobachtungen mit Rängen 12 und 13 1.3.04 PI Statistik, SS 2004
21
Einige Quantile Quartile: Dezile 0.25-Quantil oder 1. Quartil (Q1, Qu)
0.75-Quantil oder 3. Quartil (Q3, Qo) 0.5-Quantil ist der Median Dezile Unteres Dezil oder 0.1-Quantil Oberes Dezil oder 0.9-Quantil 1.3.04 PI Statistik, SS 2004
22
Standardabweichung Ist die Wurzel aus der Varianz s 2:
Varianz oder Stichprobenvarianz: Eigenschaften der Standardabweichung: s kann nicht negativ sein s = 0: alle Beobachtungen haben gleichen Wert s wird in den gleichen Einheiten gemessen wie X 1.3.04 PI Statistik, SS 2004
23
Überdeckung Anteil der Beobachtungen Intervall 2/3 95% ~ 100%
Gilt für die Normalverteilung exakt Gilt weitgehend für alle symmetrischen, unimodalen Verteilungen 1.3.04 PI Statistik, SS 2004
24
Andere Streuungsmaße Interquartilsabstand I = Qo – Qu = Q3 – Q1
überdeckt die zentralen 50% der Beobachtungen Spannweite (range) R = x(n) – x(1) Variationskoeffizient (s in Prozent des Mittelwertes): für nicht-neg. Merkmale; unabhängig von Maßeinheit MAD (mean absolute deviation) 1.3.04 PI Statistik, SS 2004
25
Schiefe und Wölbung Schiefe: Maß für Asymmetrie (unimodale Verteilung)
rechtsschief: Modus < < Momentkeoffizient (Fisher): mit Wölbung: g2 = 0: Gauss‘sche Glockenkurve g2 < 0: abgeplattet, platykurtisch, heavy tail g2 > 0: spitz, leptokurtisch, light tail 1.3.04 PI Statistik, SS 2004
26
Box Plot Darstellung einer Häufigkeitsverteilung; gibt die
wesentlichen Charakteristika wieder. (siehe Hackl & Katzenbeisser, S ) Ausreißer Whisker Qo Median Qu 50% der Daten 1.3.04 PI Statistik, SS 2004
27
Beispiel: Heilmittelkosten
Heilmittelkosten je Patient (in Euro) bei 1682 Praktischen Ärzten (AM) 176 Internisten (IN) 242 Orthopäden (OP) WGKG, 2002 1.3.04 PI Statistik, SS 2004
28
Box Plot: Elemente Box: mittlere 50% der Beobachtungen; Begrenzungen sind Quartile; Median als Mittellinie Innere Grenzen (inner fences): Qu - 1.5I, Qu + 1.5I Äußere Grenzen (outer fences): Qu - 3I, Qu + 3I Beobachtungen innerhalb der Inneren Grenzen werden verbunden (whiskers) Beobachtungen außerhalb der Inneren Grenzen und innerhalb der Äußeren Grenzen: einzeln mit einem + einzeichnen (outlier) Beobachtungen außerhalb der Äußeren Grenzen: einzeln mit einem * einzeichnen (far outlier) 1.3.04 PI Statistik, SS 2004
29
Fragestellungen In welchem Bereich kann man einen Mittelwert in der Grundgesamtheit erwarten ? Ist ein Mittelwert anders (kleiner, größer, oder ungleich) als eine bestimmte Vorgabe ? 1.3.04 PI Statistik, SS 2004
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.