Natriumchlorid (NaCl) oder einfach Kochsalz

Slides:



Advertisements
Ähnliche Präsentationen
Struktur und Eigenschaften der Materialien Übungen / Praktika Teil 1
Advertisements

Experimentalvortrag zum Thema Batterien und Akkus
Chemische Gleichungen
Farbenvielfalt des Vanadiums
Gruppenfällungen der Kationen.
Salze 1. Wiederholung 2. Nachweisreaktionen 3. Kalkkreislauf
verdünnte Natronlauge nur Lauge liegt vor DISKONTINUUM NaOH (aq):
Vorlesung Verfahrenstechnik 5. Thermische Verfahrenstechnik
Experimentalvortrag AC WS 2007/08 Angela Herrmann
Die Bildung von Salzen am Beispiel von Kochsalz
hat einen Winkel und ist nass.
2. Gruppeneigenschaften 2.1 Metalle bringen Farbe ins Spiel
Eine Präsentation von Lea Müller und Mattia La Torre
CHEMIE REDOXREAKTIONEN.
Chemie Chemische Bindungen.
Chlor-Alkali-Elektrolyse
11. Praktikumswoche: Qualitative Nachweise für Anionen
15.Physik in Biologie und Chemie
Magnesium 1. Technische Darstellung 2. Chemische Eigenschaften
Säuren Konzentrierte Säuren Verdünnte Säuren.
Ammoniak und Ammoniaklösung
Haben Sie heute schon trainiert?
Dr. Gerd Gräber Studienseminar Heppenheim
Hydrations-enthalpie
Cu in Zinksulfat-Lösung Zn in Kupfersulfat-Lösung
Definition: Einheiten aus einem Zentralteilchen und den daran gebundenen Molekülen oder Ionen, sog. Liganden (lat. ligare = binden) nennt man Komplexe.
Metalle und Ionenverbindungen
Elektrochemie Prof. Manfred SUSSITZ.
Versuch Teil 17 Wilhelm - Heinrich - Riehl - Kolleg
Elektrolyse von Wasser
Nichtmetall + Nichtmetall
Elektrolyse von Wasser
Elektrochemische Spannungsreihe
Kap. 7: Exemplarische Prüfungsfragen (1)
Wasserlöslichkeit von Salzen
Natriumchlorid-Synthese
KL = 25 Q = 3∙3= 9 < KL kein Gleichgewicht ungesättigte Lösung
Metalle Halbmetalle Nichtmetalle
Elektrolyse von Wasser
Donator-Akzeptor- Prinzip
Reduktion ist immer mit einer Oxidation gekoppelt!
Chemische Reaktion und Zeichensprache
Ionenbindung Ulla Lehmann.
Kap. 3: Exemplarische Prüfungsfragen (1)
7. Hauptgruppe im Periodensystem
Die Korrosion Der Korrosionsschutz.
Metallbindung Aluminium / Eisen.
Dr. Gerd Gräber Studienseminar Heppenheim
Elektronik Lösungen.
Die Verwandlung von chemischer in elektrische Energie
Es ist flüssig! Es ist klar! Es riecht nicht! Man kann es trinken!
Ausgewählte Experimente der Elektrochemie
3 Das chemische Gleichgewicht 3
Reinigungsprodukte Chemie in Küche und Bad.
Aluminium Silber aus Lehm?
Elektrochemische Thermodynamik
Übungen im Experimentalvortrag: Die Chemie des
Essigsäure.
Beim Bau einer Garage wird die Kupferdachrinne mit Eisennägeln am Dachstuhl befestigt. Nach einiger Zeit werden die Halterungen der Dachrinne lockerer.
Technische Elektrolyse Chlor-Alkali
Salze im Haushalt Experimentalvortrag von Isabelle Kuhn.
Modellvorstellung vom Aufbau der Materie
Anorganisch-chemisches Praktikum
Crash-Kurs Wintersemester 2017/18 Julia Rosebrock
Rohstoffe, Grundchemikalien und grosstechnische Produkte
Analyse einer Steinsalz-Leuchte
Chemische und mikrobiologische Grundlagen der Wassertechnologie
Chemische und mikrobiologische Grundlagen der Wassertechnologie
Chemische und mikrobiologische Grundlagen der Wassertechnologie
Chemische und mikrobiologische Grundlagen der Wassertechnologie
 Präsentation transkript:

Natriumchlorid (NaCl) oder einfach Kochsalz Experimentalvortrag Natriumchlorid (NaCl) oder einfach Kochsalz Fabian Gelies Sommersemester 2002

Versuch 1 Darstellung aus den Elementen Vorbereitung: Entwicklung von Chlorgas + IV - I + II 0 MnO2(s) + 4 HCl(aq) Mn2+(aq) + 2 Cl-(aq) + 2 H2O(l) + Cl2(g) Reaktionsgleichung: 0 0 + I - I 2 Na(l) + Cl2(g) 2 NaCl(g/s) + 822,56 kJ

Bezug auf die Elemente Flammenfärbung: Aufbau der Elektronenhüllen: Na(g) Na(g)* Na(g) Δ E = h · ν = h · c / λ Natrium: 589 nm (gelb) Aufbau der Elektronenhüllen: Natrium: 1s2 2s2 2p6 3s1 Chlor: 1s2 2s2 2p6 3s2 3p5 Natürliche Oxidationsstufen: Natrium (+ I ) als Na+ -Ion Chlor ( - I ) als Cl- -Ion Δ - Δ E

Bezug auf die Elemente Vorkommen von NaCl: Physiologie: 3,6 · 1016 Tonnen gelöst in den Weltmeeren 1015 Tonnen in unterirdischen Salzlagern Steinsalz weiterhin in salzhaltiger Kohle und Organismen Physiologie: 150 bis 300 g in Blut und Gewebesäften 10 bis 15 g tägliche Aufnahme Kochsalz 5 g/kg akut toxische Dosis 0,9 % : “physiologische Kochsalzlösung”

Bezug auf die Elemente Verwendung von NaCl: Gewinnung von NaCl: Herstellung fast aller Natrium- und Chlorverbindungen Gewinnung von NaCl: Herausbrechen oder Lösen aus Salzlagern Eindampfen von Salzsolen Verdunsten oder Ausfrieren von Meerwasser Reinigung von NaCl: Ausfällung von Verunreinigungen Fällung von NaCl mittels HCl-Gas

Versuch 2 „Leblanc-Verfahren“ Darstellung von HCl-Gas aus Kochsalz Vollständiger Umsatz erfolgt in zwei Stufen Reaktionsgleichung: 20°C NaCl(s)+ H2SO4(aq) NaHSO4(s) + HCl(g) ( NaCl(s)+ NaHSO4(s) Na2SO4(s) + HCl(g) ) 800°C • Gebräuchliche Labordarstellung (oft mit NH4Cl statt NaCl) • Moderne HCl - Darstellung in der Technik: Elementares Chlor wird mit Kohlenwasserstoffen umgesetzt

Versuch 2 „Leblanc-Verfahren“ Nachweis des entstandenen HCl-Gases Chloridnachweis: Fällen als Silberchlorid: Ag+(aq) + NO3-(aq) + Cl-(aq) NO3-(aq) + AgCl(s) (weiß) Lösen in Ammoniak: AgCl(s) + 2 NH3(aq) Cl-(aq) + [Ag(NH3)2]+(aq) (farblos) Säurenachweis: Farbumschlag der Phenolphthaleinlösung (violett farblos)

Kristallisation von Kochsalz Löslichkeit in Wasser: 35,6 g / 100 mL bei 20°C 39 g / 100 mL bei 100°C Foto Uni Siegen Foto: Dr. E. Becker Uni Siegen

Versuch 3 Kristallisation im Eiltempo Reaktionsgleichung: NaOH(aq) + HCl(g) H2O(l) + NaCl(s) Reaktionsart: typische Neutralisationsreaktion Relevanz: Entsorgung bei technischen Prozessen (z.B. PVC - Verbrennung)

Kochsalzkristalle Natriumchloridstruktur: Würfel (farblos und durchsichtig) Dichte: 2,164 g/cm3 Schmelzpunkt: 801 °C Siedepunkt: 1413 °C Foto Uni Siegen Natriumchloridstruktur: KOZ = 6 (Na+ und Cl-) kubisch flächenzentrierte Anordnung Fotos: Dr. E. Becker Uni Siegen

Kochsalzkristalle

NaCl-Struktur als SWF-Animation aus dem elektronischen Unterrichtsmaterial der Universität Zheng Zhou (VRC)

Kristallstrukturtyp Radienverhältnis von Kation zu Anion Anionen: Cl- S2- N3- Kationen:Cs+ Na+ Zn2+ B3+

Elektrolyse von NaCl Wässrige Elektrolyse Vortrag Thomas Decher Schmelzflusselektrolyse: Elektrodenvorgänge: Reduktion: 2 Na+(l) + 2 e - 2 Na (s) Oxidation: 2Cl-(l) Cl2(g) + 2 e - Redoxreaktion: 2 Na+(l) + 2 Cl-(l) 2 Na(s) + Cl2(g) Schema einer NaCl-Elektrolyse-anlage aus: Chemie für Gymnasien, Berlin (Cornelsen) 1994

Versuch 4 Chlorierendes Rösten von Kupferoxid Reaktionsgleichung: Δ (Schmelze) 2 CuO(s) + 2 NaCl/CaCl2(s) 2 CuCl2(s) + Na2O/CaO(s) Nachweis gelöster Cu2+ - Ionen: Lösung von CuCl2 in Wasser: [Cu(H2O)6)]2+ (hellblau) Versetzen mit Ammoniak: [Cu(NH3)4)]2+ (tiefblau)

Übergang vom Kristall zur Lösung bisherige Versuche: NaCl in kristalliner Form im Weiteren: NaCl in wässriger Lösung Phänomene beim Lösevorgang

Versuch 5 Kochsalz-Kältemischung Physikalisch-chemischer Hintergrund: Lösen von Salz in Wasser Ionen werden aus dem Gitter durch die Wasserdipole „herausgebrochen“. Ist die freiwerdende Hydratisierungsenergie kleiner als die Gitterenergie, so ist der Lösevorgang endotherm. 1.Kühlungseffekt: Lösungswärme wird aus Umgebung entnommen Abkühlung von Lösung und Gefäß. Eis ist immer von einer Wasserschicht umgeben. Eis (fest) + Energie Wasser (flüssig) Lösevorgang verschiebt Gleichgewicht: Es wird immer mehr Wasser flüssig. 2. Kühlungseffekt: Schmelzwärme des Eises wird der Umgebung entzogen weitere Abkühlung

Versuch 5 Kältemischung Verwendung: Technik (historisch) Labor Straßenverkehr

Dichte von Kochsalzlösung Konzentrierte Salzlösung hat höhere Dichte als reines Wasser Problematik: Recycling unterschiedlicher Kunststoffe Anwendung: Trennung von Kunststoffmüll unter Ausnutzung der unterschiedlichen Dichte Ablauf: 1. Müllgemenge mechanisch zerkleinert 2. Kunststoffteile in Lösung geringster Dichte 3. Kontinuierliches Umwälzen der Oberfläche 4. Absaugen der zum Boden gesunkenen Teile 5. Abgesaugte Kunststoffteile in Flüssigkeit mit nächst größerer Dichte • Technische Bezeichnung: Schwimm-Sink-Verfahren • Alternativ: Hydrozyklon-Verfahren (Zentrifugalfeld)

Demonstration 1 Dichte einer konzentrierten Salzlösung Kunststoffmüll-Trennung: Wasser NaCl-Lsg Na2S2O3-Lsg ρ = 1,0 g/cm3 ρ = 1,18 g/cm3 ρ = 1,4 g/cm3 alle Kunststoffe schwimmen PP schwimmt PS sinkt ab PVC und PET sinken ab

Versuch 6a Korrosionsförderung des Elektrolyten Kochsalz Unter welchen Bedingungen rostet Eisen? Bei Gegebenheit der drei notwendigen Korrosionskomponenten: Sauerstoff (Raumluft) Elektrolyt (NaCl-Lösung) Wasser (NaCl-Lösung) Reaktionsgleichung: 2 Fe2(s) + O2(g) + H2O(l) 2 FeO(OH)(s) = Fe2O3 · H2O(s) Salzlösung ersetzbar durch SO2 - oder CO2 -haltiges Wasser Säurewirkung

Versuch 6b Korrosionsförderung des Elektrolyten Kochsalz Ein Bleistiftspitzer als Lokalelement (Modell der Opferanode) Große Potentialdifferenz zwischen Stahlklinge (Eisen) und Leichtmetallblock (Legierung: 97% Magnesium, 3% Aluminium) Block (Anode): Mg(s) Mg2+(aq) + 2 e¯ Klinge (Kathode): 2 H2O(l) + 2 e¯ H2(g) + 2 OH ¯(aq) Rand des Blocks: Mg2+(aq) + OH ¯(aq) Mg(OH)2(s) Verwendung: Korrosionsschutz ( z.B. bei Schiffen oder Heizungsanlagen)

Versuch 6c Salzbatterie Standardpotentiale ε0 Mg Mg2+ : -2,38V Fe Fe2+ : -0,44V Vermeidung der elektrochemischen Korrosion: - Kontakt der verschiedenen Metalle unterbinden - Potentiale genau abstimmen

Osmotischer Druck Begrifflichkeit osmotischer Druck Diffusion einer Flüssigkeit durch semipermeable Membran, welche zwei Flüssigkeiten trennt Wassermoleküle werden durchgelassen, solvatisierte Ionen nicht Grundlage: Das Bestreben Konzentrationsunterschiede auszugleichen osmotischer Druck Biologische Bedeutung Halbdurchlässige Wände: - Grenzschichten des Plasmas der Tiere und Pflanzen - Innendruck und Außendruck von Zellen

Demonstration 2 Osmotischer Druck Aquarium gefüllt mit entionisiertem Wasser Schweineblase gefüllt mit konzentrierter Salzlösung ********* *************** ******************* ******************** ***************** **********

Demonstration 2 Osmotischer Druck Wasser drängt von außen nach innen ********* *************** ******************* ******************** ***************** **********

Demonstration 2 Osmotischer Druck Die Blase ist ausgedehnt und steht unter Druck * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Demonstration 2 Osmotischer Druck Sticht man nun ein kleines Loch hinein ... * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Demonstration 2 Osmotischer Druck * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Abschlussbetrachtung Die Verbindung NaCl: Alltäglich aber vielseitig Abhandlung im Vortrag: Keinesfalls abgeschlossen Sicher nicht vollständig Beabsichtigt: Gewichtung des experimentellen Charakters Daher: - Vielseitige Versuche und Demonstrationen (Feststoff, Lösung, Gasentwicklung) - Salzschmelze bis Kältemischung - Historie und Zukunftsanwendung - Fächerübergreifende Einblicke: (Biologie, Physik, Technologie) - Vielfältiger Medieneinsatz

Literatur Internetveröffentlichungen (zur Didaktik der Chemie) Universitäten Bielefeld und Siegen sowie Kantonsschule Heerbrugg(CH) Taschenbuch der Chemie (Fachbuchverlag Leipzig) Schröter, Lautenschläger, Bibrack Lehrbuch der Anorganischen Chemie (de Gruyter) Hollemann und Wiberg