Computersimulation und Konfliktforschung am Beispiel von GeoSim

Slides:



Advertisements
Ähnliche Präsentationen
Die deutsche Satzstellung
Advertisements

Verbs Used Impersonally With Dative Deutsch I/II Fr. Spampinato.
Relative Clauses… Putting sentences together in harmony.
Prepositions Part 1: Review of Prepositions. Part 2: Self-quiz. 1 2.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Der formelle Imperativ – the Imperative
Coordinating Conjunctions Why we need them & how to use them deutschdrang.com.
 Every part in a sentence has a grammatical function. Some common functions are: - Subject - Verb - Direct object / accusative object - Indirect object.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
Weak pushover verbs..... lieben kaufen spielen suchen....are verbs that do exactly as they are told. They stick to a regular pattern that does not change!
Institut für Angewandte Mikroelektronik und Datentechnik Course and contest Results of Phase 4 Nils Büscher Selected Topics in VLSI Design (Module 24513)
Literary Machines, zusammengestellt für ::COLLABOR:: von H. Mittendorfer Literary MACHINES 1980 bis 1987, by Theodor Holm NELSON ISBN
Akkusativ Präpositionen
You need to use your mouse to see this presentation © Heidi Behrens.
Alltagsleben Treffpunkt Deutsch Sixth Edition
What is a “CASE”? in English: pronouns, certain interrogatives
A Quick Review. What are the four prepositions used most commonly in this chapter to talk about vacations. an auf in nach.
How does the Summer Party of the LMU work? - Organizations and Networks -
GERMAN WORD ORDER ORDER s. Sentences are made up by placing a variety of words in a specific order. If the order is wrong, the sentence is difficult to.
Imperfekt (Simple Past) Irregular or strong verbs
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Memorisation techniques
Kapitel 8 Grammar INDEX 1.Command Forms: The Du-Command Form & Ihr- Command 2.Sentences & Clauses.
Kapitel 5: Einkaufen Sprache. Alles klar Look over and know all of the Wortschatz on Seite 171 and 172. Look over the illustration found on Seite 145.
Großvater Großmutter Großvater Großmutter Tante/Onkel Vater Mutter.
Word order: 1.In a main clause the VERB is the second idea: Helgakommteben aus der Bäckerei This may not be the second word Meiner Meinung nachsind Hobbys.
Essay structure Example: Die fetten Jahre sind vorbei: Was passiert auf der Almhütte? Welche Bedeutung hat sie für jede der vier Personen? Intro: One or.
What’s the weather like?. Look at the question above Turn it around and you have Das Wetter ist.... The phrase Das Wetter ist.... or Es ist.... can be.
The Umlaut “Ü” in German: Exercises Based on chapter 5.8 of Rundblick 2 and online Speaking Practice Chapter 7.8 and 9.9.
Fitness. An english presentation.
Interrogatives and Verbs
Premiere Conferencing GmbH
Freizeit Thema 5 Kapitel 1 (1)
Du bist am dicksten und am dümmsten.
The Umlaut “Ö” in German: Exercises
Sentence Structure Connectives
Englisch Grundlagen, Modal Verbs
Vorlesung Völkerrecht Diplomatischer Schutz
Jetzt machen Venues aufmachen!!! Geh zu
The dynamic ultrasound
Jetzt machen Venues aufmachen!!! Geh zu
Process and Impact of Re-Inspection in NRW
Telling Time in German Deutsch 1 Part 1.
Say What? We put the flowers on the Tisch.
Students have revised SEIN and HABEN for homework
You need to use your mouse to see this presentation
THE PERFECT TENSE IN GERMAN
THE PAST TENSE (Part 3) VERBS WHICH TAKE SEIN
Ferrite Material Modeling (1) : Kicker principle
To English Translations
Collaborative Webmeeting November 24th, 2010 Geneve / Darmstadt
Uranus. Uranus is the seventh in terms of distance from the Sun, the third in diameter and the fourth in mass of the planet of the Solar System. It was.
ELECTR IC CARS Karim Aly University of Applied Sciences.
type / function / form type of words:
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
THE PAST TENSE (Part 3) VERBS WHICH TAKE SEIN
Past Tense.
The Conversational Past
The Conversational Past
Niedersächsisches Ministerium
Ich - Projekt Due Monday, September 19..
School supplies.
You need to use your mouse to see this presentation
 Präsentation transkript:

Computersimulation und Konfliktforschung am Beispiel von GeoSim

Agenda Einführung in die agenten-basierte Modellierung Schellings Segregations-Model Einführung in Geosim Anwendungen in der Konfliktforschung

Definition ABM ist eine computergestützte Forschungsmethode, die es dem Forscher erlaubt, künstliche Welten zu kreieren, diese zu analysieren und damit zu experimentieren. Bottom-up Basiert auf zellularen Automata und verteilter künstlicher Intelligenz

Disaggregierte Modellierung Wenn <Kondition> dann <Handlung 1> sonst <Handlung 2> Unbewegte Agenten Beobachter Bewegte Agenten Daten Organisationen von Agenten Künstliche Welt

Blick vom Berliner Fernsehturm

Ethnische Stadtteile Klein-Italien, San Diego Chinatown, New York

Nachbarschafts-Segregation Die Spielregeln Ein Agent bleibt, wenn min. 1/3 der Nachbarn „seiner Art“ ist < 1/3 Thomas C. Schelling Nobelpreis für Wirtschaft 2005 Ansonsten zieht er auf eine freie, angenehmere Position um

Schelling (Converted).mov Vorführung 1 Schelling (Converted).mov

Ergebnisse des Models Zahl der Nachbarschaften Zufriedenheit Zeit Zeit

Europa um 1500

Europa um 1900

“States made war and war made the state” – Charles Tilly

GeoSim GeoSim nutzt Repast, ein Java-Werkzeug Staaten sind hierarchische, begrenzte Akteure, die in einem dynamischen, gitter-basierten Netzwerk interagieren

Vorführung 2 GeoSim.mov

Emergente Ergebnisse Anzahl der Staaten Anteil der sicheren Gebiete Zeit Zeit

Mögliche Equilibria Multipolarität mit 15 Staaten (Vorführung) Unipolarität Bipolarität

Modeling conflict with ABM Configurations Processes Qualitative properties Example 3. Democratic peace Example 4. Emergence of the territorial state Distributional Example 2. State-size distributions Example 1. War-size distributions Cederman 2003. "Modeling the Size of Wars.” American Political Science Review 97:135-150.

Cumulative war-size plot, 1820-1997 To check whether Richardson's law still holds up, I used casualty data from the Correlates of War data set based on interstate wars in the last two centuries. (standard data set) If we plot the cumulative frequency that there is war of a larger size in a logarithmic diagram, the power law turns into a straight line. I.e. like the Richter scale of earthquakes, both axes are logarithmic, both size and cumulative prob. Obviously for small wars, this probability is close to one. For very large wars, however, the probability is going to be very small. As you can see, the linear fit is striking, in fact almost spooky! This result translates into a factor 2.6. The steeper the line, the more peaceful is the system. Robustness: see Levy + Hui But conventional IR theories have little to say about this finding. Thus it is a true puzzle. We need to turn elsewhere... Data Source: Correlates of War Project (COW)

Theory: Self-organized criticality log f f Input Output s-a log s Complex System s Slowly driven systems that fluctuate around state of marginal stability while generating non-linear output according to a power law. Examples: sandpiles, semi-conductors, earthquakes, extinction of species, forest fires, epidemics, traffic jams, city populations, stock market fluctuations, firm size In the late 1980s, physicists discovered a large family of complex systems that generate power-law regularities. Per Bak, coined the term self-organized criticality: Paradigmatic example: sandpile. If trickle sand slowly on a sandpile ==> pile will grow, but not in an even fashion. From time to time, there will be avalanches of various sizes. More abstractly put, there is a linear input building up tensions held back by thresholds. When disturbances happen, they follow a power law. (hyperbolic curve) Sandpile differs from Newtonian physics (e.g. billiard balls) scale invariance: avalanches of all sizes possible; no typical size (fractals) history matters: path dependence, butterfly effect, but unlike chaos because output is not just random threshold effects and positive feedback (friction holding back the sand, or like pushing a piano over a rugged floor, sometimes is slides) Simple analogy: applying SOC to our puzzle Linear input: technological change building up tension Thresholds: decisions to go to war Positive feedback: avalanches through interdependent decisions ==> ABM standard approach in non-equil. theory

Self-organized criticality Per Bak’s sand pile Power-law distributed avalanches in a rice pile

War clusters in Geosim t = 3,326 t = 10,000

Simulated cumulative war-size plot log P(S > s) (cumulative frequency) log s (severity) log P(S > s) = 1.68 – 0.64 log s N = 218 R2 = 0.991 Does the sample run generate a power-law distribution? Yes! Wit a R^2 at 0.991 it even surpasses the empirical distribution. Range over four orders of magnitude. The slope of –0.64 is also realistic. This looks very much like the distribution in the empirical case. But is this representative? I have chosen the sample run such that it generates median linear fit out of 15 replications: lowest at 0.975 and highest at 0.996. Look at histograms: See “Modeling the Size of Wars” American Political Science Review Feb. 2003

Modeling conflict with ABM Configurations Processes Qualitative properties Example 3. Democratic peace Example 4. Emergence of the territorial state Distributional Example 2. State-size distributions Example 1. War-size distributions Cederman 2003. “Explaining State Sizes: A Geopolitical Model.” Proceedings of Agent 2003, eds. Macal, North & Sallach. Argonne.

2. Modeling state sizes: Empirical data log Pr (S > s) (cumulative frequency) log S ~ N(5.31, 0.79) MAE = 0.028 1998 log s (state size) Data: Lake et al.

Simulating state size with terrain

Simulated state-size distribution log s (state size) log Pr (S > s) (cumulative frequency) log S ~ N(1.47, 0.53) MAE = 0.050

Modeling conflict with ABM Configurations Processes Qualitative properties Example 3. Democratic peace Example 4. Emergence of the territorial state Distributional Example 2. State-size distributions Example 1. War-size distributions Cederman, L-E & K S Gleditsch. 2004. "Conquest and Regime Change" International Studies Quarterly 48:603-629.

Simulating global democratization Source: Cederman & Gleditsch 2004

A simulated democratic outcome

Replications with regime change Democratic share of territory Without collective security Democratic share of territory With collective security 0 2000 4000 6000 8000 10000 Time 0 2000 4000 6000 8000 10000 Time

Modeling conflict with ABM Configurations Processes Qualitative properties Example 3. Democratic peace Example 4. Emergence of the territorial state Distributional Example 2. State-size distributions Example 1. War-size distributions Cederman & Girardin 2010. “Growing Sovereignty” International Studies Quarterly 54: 27-48.

Taxation in a linear state 1.576 Tax: k= .5 .576 Discount: d = .8 1.224 .4 0.4 0.4 0.6 0.6 0.6 1 2 3 4 5

Results from the linear model Proposition 1. Assuming exponential decay, direct rule is always more efficient Proposition 2. Assuming a step function, indirect rule is more efficient for low threshold values x* x* x‘ 1/(1-k) k(3-k) 1-k pIDR(n) pDR(n) n p(n) We can now do the math for the line state: Prop. 1: Given exponential decay, DR is always best Graph: thin curve IDR, thick curve DR Prop. 2: Given a step function x*, there is a region below 1/(1-k) where IDR is superior above x’ But if x* slides beyond this point, DR will always pay off Model technological change: simple shift from IDR  DR

The initial state of OrgForms

Modeling technological change

OrgForms: A dynamic network model Conquest Technological Progress Systems Change Organizational Bypass

Indirect rule in the “Middle Ages”

Direct rule in the modern system

Replications with moving threshold and slope

Exploring geopolitics using agent-based modeling OrgForms GeoSim 0 GeoSim 4 GeoContest

Toward more realistic models of civil wars Our strategy: Step I: extending Geosim framework Step II: conducting empirical research Step III: back to computational modeling

Step I: Nationalist insurgency model Use agent-based modeling to articulate identity-based mechanisms of insurgency In Order, Conflict, and Violence, eds. Kalyvas, Shapiro & Masoud. CUP, 2008.