PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“ Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“ Anwendungsfelder geschachtelter Evolutionsstrategien - Programmierung einer geschachtelten ES
, , m m l l ( ) - ES 2 , 4 (2, 6)8 (2, 6)8 + (2, 6)8 + (2, 6)8 + Auf dem Weg zu einer evolutionsstrategischen Algebra m , , g [ ] ( m l ) - ES + l + Beispiel: m = 2, l = 6, l´ = 4, g = 8 , m´ = 2 (2, 6)·(2, 6)·(2, 6)·(2, 6)·(2, 6)·(2, 6) )·(2, 6)·(2, 6) 2 , 4 (2, 6)8 (2, 6)8 + (2, 6)8 + (2, 6)8 + (2, 6)8 = Selektion der besten 2 Populationen Beste Population nach 8 Generationen Zweitbeste Population nach 8 Generationen
Beispiel für eine algebraische Operation in einer geschachtelten ES 1 1, 2 1, 1 Zwei unterschiedliche Strategien
Die Geschachtelte Evolutionsstrategie Höchste Nachahmungsstufe der biologischen Evolution m' = Zahl der Eltern-Populationen l' = Zahl der Nachkommen-Populationen m = Zahl der Eltern-Individuen l = Zahl der Nachkommen-Individuen g = Generationen der Isolation g ' = Zahl der Populations-Generationen r' = Mischungszahl Populationen r = Mischungszahl Individuen
| Familie Gattung { Art [ Varietät ( Individuum ) ] } | Biologische Entsprechung der Strategie-Schachtelung | Familie Gattung { Art [ Varietät ( Individuum ) ] } |
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Sprungvariablen Gleitvariablen Gemischt ganzzahlige Optimierung Qualität Q1 Qualität Q 2 Zwei-Ziele-Optimierung Springen Klettern Globale Optimierung Vergangenheit Gegenwart Ortho-Evolution Anwendungsfelder für geschachtelte Evolutionsstrategien
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Anwendungsfelder für geschachtelte Evolutionsstrategien
Vier Kletterstrategien im Wettbewerb Angsthase Kolumbus Amundsen Hitzkopf Vier Kletterstrategien im Wettbewerb
Algorithmus der (1, l ) – Evolutionstrategie mit MSR Es ist problematisch anzunehmen, dass sich schon nach einer Generation die beste Fortschrittsgeschwindigkeit selektieren lässt.
a = 1,1 … 1,5 Korrekte mutative Schrittweitenanpassung mit einer geschachtelten Evolutionsstrategie a = 1,1 … 1,5 Notation auf der linken Klammerseite bedeutet : Die Schritt-weite ist eine Populationseigenschaft. Sie wird in der jewei-ligen inneren Klammer benutzt und dort nicht mehr variiert.
Die geschachtelte Evolutionsstrategie Neue Gründerpopulationen weiß = a klein gelb = a groß Die geschachtelte Evolutionsstrategie
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Sprungvariablen Gleitvariablen Gemischt ganzzahlige Optimierung Anwendungsfelder für geschachtelte Evolutionsstrategien
Gleitvariable ! Sprungvariable ! y x Gewicht Minimum
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Sprungvariablen Gleitvariablen Gemischt ganzzahlige Optimierung Qualität Q1 Qualität Q 2 Zwei-Ziele-Optimierung Anwendungsfelder für geschachtelte Evolutionsstrategien
Schlagwort „multikriterielle Optimierung“ Q1 Q2 Das Management entscheidet über die Realisation Schlagwort „multikriterielle Optimierung“ Mehr-Ziele-Optimierung Zwei-Ziele-Optimierung Pareto Front Pareto-Optimierung Ein 2-Ziele Pareto-Optimum ist ein Zustand, bei dem es nicht möglich ist, eine Qualität Q1 besser zu machen, ohne dass sich die Qualität Q2 verschlechtert. Die Menge der Pareto-Optima bildet die sogenannte Pareto-Front. Besser wir lösen eine Zwei-Ziele-Optimierung mit der gewichteten globalen Qualität: Für die verschiedenen Gewichtungen g1 und g2 ergibt sich die Pareto-Front! Die Idee der globalen Qualität lässt sich leicht auf mehr als zwei Qualitäten erweitern.
Eine 2-Ziele-Optimierung SteigZahl
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Sprungvariablen Gleitvariablen Gemischt ganzzahlige Optimierung Qualität Q1 Qualität Q 2 Zwei-Ziele-Optimierung Springen Klettern Globale Optimierung Anwendungsfelder für geschachtelte Evolutionsstrategien
Gründer Populationen
9 8 7 6 5 4 8 3 7 6 5 4 3 8 9 6 7 5 Wir sind hier 3 4 9 8 7 7 6 6 5 5 4 4 3 3 7 Für n >> 1 sind die weißen Einzugsgebiete der Berge vernachlässigbar klein gegenüber dem schwarzen Gebiet dazwischen ! 6 5 4 3 7 6 5 6 7 8 6 4 3 4 5 3 5 4 3 24
Lückenwert L L = Zwischenraum Kugelraum „weiß“: Einzugsgebiete der Berge „schwarz“: Zwischenräume
Beispiel für eine multimodale Optimierung Evolutionsstrategische Optimierung eines Freiträgers mit minimalem Gewicht Beispiel für eine multimodale Optimierung
Anwendungsfelder für geschachtelte Evolutionsstrategien Strategievariablen Objektvariablen Strategie-Evolution Sprungvariablen Gleitvariablen Gemischt ganzzahlige Optimierung Qualität Q1 Qualität Q 2 Zwei-Ziele-Optimierung Springen Klettern Globale Optimierung Vergangenheit Gegenwart Ortho-Evolution Anwendungsfelder für geschachtelte Evolutionsstrategien
, , [ m ] m l l ( ) - ES g g + + Ortho-Evolution ! Geschachtelte Evolutionsstrategie [ m , , g ] g m + l ( + l ) - ES Aktuelle Position Gründerposition Ortho-Evolution !
e e d h d b h d b ( ) ( d d ) h h R q F 1 Strahl 2 = Brechungsindex h d 1 Strahl 2 b h d 2 b ( e 1 ) ( d d ) h 2 1 h k R q 2 e = Brechungsindex F w = Gewichtsfaktor Zwei-Ziele-Optimierung
Das Wunder der Koordinatentransformation
D‘ARCY THOMSONs Transformationen Pseudopriacanthus altus Polyprion Antigonia capros Scorpaena sp.
Koordinatentransformation nach Albrecht Dürer
Das Rätsel der sogenannten Schrott-DNA (junk DNA) ? Heute weiß man: Die Schrott-DNA bildet einen riesigen Steuerungsapparat Und das könnte auch eine Koordi-naten-Transforma-tion sein Bauanweisung für Protein „Dunkle“ DNA über 95%
Lineare Transformation: Polygenie und Polyphänie Pleiotropie Lineare Transformation: Polygenie und Polyphänie Ein Merkmal (y) wird von vielen Genen (x) gesteuert n = 5 ! Ein Gen (x) steuert viele Merkmale (y)
Schiefwinklige lineare Koordinaten-Transformationen
Zu viele Koeffizienten für Transformation eines orthogonalen Systems Für ein orthogonales System benötigen wir statt: nur Koeffizienten
ES-Hybridverfahren Matrizenrechnung Orthogonalisierungsverfahren CMA-Methode Covarianz-Matrix-Adaptation ES-Hybridverfahren
Programmierung einer geschachtelten Evolutionsstrategie
Algorithmus: Farbe anstelle eines Index !
MATLAB-Programm der (1, l ) ES
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; Variablenzahl, Generationszahl, Nachkommenzahl und Startwerte für Variablenwerte und Schritt-weite des Start-Elters
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg end Erzeugen der Generationenschleife
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; end Initialisierung der Qualität im Bestwert-Zwischenspeicher auf nicht verschlechterbaren Wert
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk end Generierung der Nachkommenschleife
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); end Deterministische Variation der Mutationsschrittweite
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); end Erzeugung eines mutierten Nachkommen
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); end Bestimmung der Qualität des mutierten Nachkommen
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end Bei Q-Verbesserung Zwischen-speicherung der Qualität, Schritt-weite und Variablenwerte
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; Nachkomme aus dem Bestwert-Zwischenspeicher wird zum Elter der nächsten Generation
MATLAB-Programm der (1, l ) ES v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; semilogy(g,qe,'b.') hold on; drawnow; Darstellung der Qualität als Funktion der Generationszahl
Von der einfachen zur geschachtelten ES Programmverdopplung gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; semilogy(g,qe,'b.') hold on; drawnow; v=100; gg=1000; kk=10; xe=ones(v,1); de=1; aa=1.5; for g=1:gg qb=1e+20; for k=1:kk dn=de*aa^(2*round(rand)-1); xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; semilogy(g,qe,'b.') hold on; drawnow;
Programmdifferenzierung v=100; gg1=1000; kk1=10; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+dn1*randn(v,1)/sqrt(v); qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; xe1=xb1; semilogy(g1,qe1,'b.') hold on; drawnow; v=100; gg0=1000; kk0=10; xe0=ones(v,1); de0=1; aa0=1.5; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v); qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; semilogy(g0,qe0,'b.') hold on; drawnow;
Programmschachtelung v=100; gg1=1000; kk1=10; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+dn1*randn(v,1)/sqrt(v); qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; xe1=xb1; semilogy(g1,qe1,'b.') hold on; drawnow; v=100; gg0=1000; kk0=10; xe0=ones(v,1); de0=1; aa0=1.5; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v); qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; semilogy(g0,qe0,'b.') hold on; drawnow;
Programmschachtelung 50 2 v=100; gg1=1000; kk1=10; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+dn1*randn(v,1)/sqrt(v); gg0=1000; kk0=10; xe0=ones(v,1); de0=1; aa0=1.5; 1.0 for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v); qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; semilogy(g0,qe0,'b.') hold on; drawnow; de0=dn1; xe0=xn1; dn1=de0; xn1=xe0; qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; xe1=xb1; semilogy(g1,qe1,'b.') hold on; drawnow;
Programmschachtelung v=100; gg1=1000; kk1=2; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+0*randn(v,1)/sqrt(v); gg0=50; kk0=10; xe0=ones(v,1); de0=1; aa0=1.0; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v); qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; de0=dn1; xe0=xn1; dn1=de0; xn1=xe0; qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; xe1=xb1; semilogy(g1,qe1,'b.') hold on; drawnow; MATLAB-Programm einer geschachtelten ES
Programmschachtelung oo=ones(v,1) v=100; gg1=1000; kk1=2; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+0*randn(v,1)/sqrt(v); gg0=50; kk0=10; xe0=ones(v,1); de0=1; aa0=1.0; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v) qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; semilogy(g0,qe0,'b.') hold on; drawnow; de0=dn1; xe0=xn1; +oo*randn/sqrt(v); ; dn1=de0; xn1=xe0; qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; semilogy(g1,qe1,'b.') hold on; drawnow; oo=xb1-xe1; MATLAB-Programm einer geschachtelten ES MATLAB-Programm einer geschachtelten Ortho-ES xe1=xb1;
Programmschachtelung oo=ones(v,1); v=100; gg1=1000; kk1=2; xe1=ones(v,1); de1=1; aa1=1.5; for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+0*randn(v,1)/sqrt(v); gg0=50; kk0=10; xe0=ones(v,1); de0=1; aa0=1.0; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v) qn0=sum(xn0.^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; semilogy(g0,qe0,'b.') hold on; drawnow; de0=dn1; xe0=xn1; +oo*randn/sqrt(v); ; dn1=de0; xn1=xe0; qn1=sum(xn1.^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; end qe1=qb1; de1=db1; semilogy(g1,qe1,'b.') hold on; drawnow; oo=xb1-xe1; MATLAB-Programm einer geschachtelten Ortho-ES xe1=xb1;
Zum Kopieren (Qualitätsfunktion = „Zigarre“ ) v=100; gg1=1000; kk1=2; xe1=ones(v,1); de1=1; aa1=1.5; gg0=50; kk0=10; xe0=ones(v,1); de0=1; aa0=1.0; oo=ones(v,1); for g1=1:gg1 qb1=1e+20; for k1=1:kk1 dn1=de1*aa1^(2*round(rand)-1); xn1=xe1+0*randn(v,1)/sqrt(v); de0=dn1; xe0=xn1; for g0=1:gg0 qb0=1e+20; for k0=1:kk0 dn0=de0*aa0^(2*round(rand)-1); xn0=xe0+dn0*randn(v,1)/sqrt(v)+oo*randn/sqrt(v); qn0=xn0(1)^2+1000*sum(xn0(2:v).^2); if qn0 < qb0 qb0=qn0; db0=dn0; xb0=xn0; end qe0=qb0; de0=db0; xe0=xb0; dn1=de0; xn1=xe0; qn1=xn1(1)^2+1000*sum(xn1(2:v).^2); if qn1 < qb1 qb1=qn1; db1=dn1; xb1=xn1; qe1=qb1; de1=db1; oo=xb1-xe1; xe1=xb1; semilogy(g1,qe1,'b.') hold on; drawnow; MATLAB-Programm einer geschachtelten Ortho-ES
Die geschachtelte Evolutionsstrategie Neue Gründerpopulationen liegen übereinander (bisher) Die geschachtelte Evolutionsstrategie
Die geschachtelte Evolutionsstrategie Neue Gründerpopulationen variieren ihre Startposition Die geschachtelte Evolutionsstrategie
Schrittweite für das Setzen von Gründerpopulationen Schrittweite für das lokale Bergklettern zum Optimum Algorithmus einer geschachtelten ES, bei der nicht nur jede Population eine eigene Schrittweite besitzt, sondern die Startposition jeder Gründerpopulation noch variiert wird
Mathematische Formulierung einer (1, l ) - Ortho-ES in ungeschachtelter Form Variation k = 1, 2, … l Nachkommen Elter vor m Generationen Selektion ( B = Bester Nachkomme)
Ende www.bionik.tu-berlin.de