Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms II

Slides:



Advertisements
Ähnliche Präsentationen
Kap. 13 Sweep-Line Algorithmen Kap Schnittprobleme
Advertisements

Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
LS 2 / Informatik Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
LS 2 / Informatik Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
WS 03/041 Algorithmentheorie 01 - Einleitung Prof. Dr. S. Albers Prof. Dr. Th. Ottmann.
Telefonnummer.
CPCP Institute of Clinical Pharmacology AGAH Annual Meeting, 29. Februar 2004, Berlin, Praktischer Umgang mit den Genehmigungsanträgen gemäß 12. AMG Novelle.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Workshop zur Medienarbeit der katholischen Kirche Aspekte des Religionsmonitors Berlin, 02. April 2008.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
= = = = 47 = 47 = 48 = =
-17 Konjunkturerwartung Europa September 2013 Indikator > +20 Indikator 0 a +20 Indikator 0 a -20 Indikator < -20 Europäische Union gesamt: +6 Indikator.
Scratch Der Einstieg in das Programmieren. Scatch: Entwicklungsumgebung Prof. Dr. Haftendorn, Leuphana Universität Lüneburg,
WS Algorithmentheorie 02 - Polynomprodukt und Fast Fourier Transformation Prof. Dr. Th. Ottmann.
WS Algorithmentheorie 01 – Divide and Conquer (Segmentschnitt) Prof. Dr. Th. Ottmann.
Geometrisches Divide and Conquer
© 2006 W. Oberschelp, G. Vossen Rechneraufbau & Rechnerstrukturen, Folie 2.1.
Grundkurs Theoretische Informatik, Folie 2.1 © 2006 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 2 Gottfried Vossen Kurt-Ulrich Witt.
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Übung Diskrete Mathematik SS 2003 Segmentschnitt I.
Lösung der Aufgabe 1: Die Erweiterung des Diagramms auf „Winged Egde“ besteht in zwei Beziehungen, nr-Kante und vl-Kante, zwischen der Klasse Kante. Jede.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II Vorlesung In welcher Masche liegt der Punkt p?
Studienverlauf im Ausländerstudium
Schieferdeckarten Dach.ppt
Bild 1.1 Copyright © Alfred Mertins | Signaltheorie, 2. Auflage Vieweg+Teubner PLUS Zusatzmaterialien Vieweg+Teubner Verlag | Wiesbaden.
Gebäudeverschneidung 4
20:00.
Diskrete Mathe 9 Vorlesung 9 SS 2001
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung 1 SS 2001 Algorithmus von Dijkstra.
Zusatzfolien zu B-Bäumen
für Weihnachten oder als Tischdekoration für das ganze Jahr
Wir üben die Malsätzchen
Diskrete Mathematik II
Geoinformation II Vorlesung 4 SS 2001 Voronoi-Diagramme.
Konstruktion der Voronoi-Diagramme II
Diskrete Mathematik II
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung 5 SS 2001 Segmentschnitt II (n Segmente)
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II Vorlesung 7 SS 2000 Punkt-in-Polygon-Verfahren I (Trapezkarte)
Konstruktion der Voronoi-Diagramme I
Geg.: Zeichnungsdaten, O Ges.: F´, O´, Strahlengang
NEU! 1 2. Wo kommt diese Art von Rezeptor im Körper vor?
Birdwatch Start Mit deinem Feldstecher entdeckst du auf einer Exkursion viele Vogelarten. Kennst du sie alle? Vogelquiz Birdwatch.
PROCAM Score Alter (Jahre)
Geometrische Aufgaben
Symmetrische Blockchiffren DES – der Data Encryption Standard
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Großer Altersunterschied bei Paaren fällt nicht auf!
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Pigmentierte Läsionen der Haut
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Vortrag von Rechtsanwältin Verena Nedden, Fachanwältin für Steuerrecht zur Veranstaltung Wege zum bedingungslosen Grundeinkommen der Piratenpartei Rhein-Hessen.
1 Mathematical Programming Nichtlineare Programmierung.
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation III Vorlesung 1 WS 2001/02 Punkt-in-Landkarte I (Streifenkarte)
Diskrete Mathematik II
1 IdeenSet Sonnensystem Ideenset Wann können Sonnenfinsternisse stattfinden? Erich Laager / 2014.
Bildergalerie PRESEASON CAMP Juni 2014 Romanshorn Get ready for the Season!
Es war einmal ein Haus
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II 6. Sem. Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wie.
Technische Kommunikation
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Foliendesign: Jörg Steinrücken & Tobias Kahn Vorlesung
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Foliendesign: Jörg Steinrücken & Tobias Kahn Vorlesung
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung Voronoi-Diagramme.
Institut für Kartographie und Geoinformation Dipl.-Ing. J. Schmittwilken Diskrete Mathe II Übung
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II 6. Sem. Vorlesung 4 4. Mai 2000 Voronoi-Diagramm.
 Präsentation transkript:

Vorlesung 5 18. Mai 2000 Konstruktion des Voronoi-Diagramms II Geoinformation II 6. Sem. Vorlesung 5 18. Mai 2000 Konstruktion des Voronoi-Diagramms II

Divide and Conquer: Merge

Konstruktion des Voronoi-Diagramms „Divide and Conquer“ Input: Gegeben ist eine Menge P von mindestens 2 Punkten Split: Zerlege P in zwei etwa gleich große Teilmengen P1 und P2 Rekursiv: Berechne Voronoi-Diagramme von VD(P1) und VD(P2) Merge: Verknüpfe VD(P1) und VD(P2)

„Merge“ Die Voronoi-Diagramme VD(P1) und VD(P2) sind bereits berechnet. Die konvexen Hüllen CH(P1) und CH(P2) seien ebenfalls an dieser Stelle bekannt. 1. Bestimme die oberen und unteren Extrempunkte und die beiden oberen und unteren Tangenten von CH(P1)  CH(P2) 2. Konstruiere CH(P1  P2) 3. Bilde die Mittelsenkrechten zu den beiden neu eingeführten Kanten 4. Konstruiere den trennenden Kantenzug als Verbindung der beiden Mittelsenkrechten 5. Entferne die überstehenden Kanten 6. Bilde die neu entstandenen Voronoi-Regionen (Maschen)

Extrempunkte von CH(P1)  CH(P2) max y max y min y min y

Tangente von CH(P1)  CH(P2)

Nochmals zur konvexen Hülle CH Was wissen wir über die „konvexe Hülle“ CH(P) einer Punktmenge P? Die Extrempunkte sind die Knoten auf der Grenze von CH. Zu je zwei Punkten P1 und P2 ist die verbindende Kante ganz in CH enthalten. Der obere und der untere Extrempunkt zerlegen die Grenze von CH in zwei vertikal monotone Kantenzüge. Die Verbindungskante k zweier Punkte P1 und P2 aus P definiert eine Randkante von CH genau dann, wenn alle übrigen Punkte von P auf der gleichen Seite von k liegen. P2 ist genau dann Nachfolger von P1 auf dem Rand von CH, wenn der zugehörige polare Winkel von P2 minimal ist.

Tangente

Nachfolger - Bestimmung P1 Winkel minimal P2

Nachfolger P1 Winkel minimal P2

Bestimmung der (oberen) Tangenten der konvexen Hüllen Bestimme die oberen und unteren Extrempunkte von CH(P1), CH(P2) und CH(P1)  CH(P2) Betrachte die oberen Extrempunkte P1 und Q1 und die Nachfolger P2 und Q2 im Uhrzeigersinn, und sei P1 höher als Q1 Bestimme das Minimum der mit P1P2, P1Q1 und P1Q2 assoziierten Winkel Fälle: P1 Q1 ist minimal: Tangente gefunden, fertig P1 P2 minimal: ersetze P1 durch P2 und P2 durch P3 (wandere auf der linken konvexen Hülle im Uhrzeigersinn) P1 Q2 minimal: ersetze Q1 durch Q2 und Q2 durch Q3 (wandere auf der rechten konvexen Hülle im Uhrzeigersinn) Der Fall der unteren Tangente ist symmetrisch

Extrempunkte

2 vertikal monotone Kantenzüge

Tangente

Bestimmung des Nachfolgers Winkel nicht minimal

Bestimmung des Nachfolgers Winkel minimal

Bestimmung des Nachfolgers

Bestimmung des Nachfolgers

Konvexe Hülle

Bestimmung des Nachfolgers

Konvexe Hülle

Konstruiere den trennenden Kantenzug als Verbindung der beiden Mittelsenkrechten

Vereinigung Mittelsenkrechte bilden

Vereinigung

Vereinigung Aktive Voronoi-Diagramme Schnittpunkte mit Seg- menten suchen

Vereinigung Aktive Voronoi-Diagramme Schnittpunkte mit Seg- menten suchen Neues aktives VD

Vereinigung Aktive Voronoi-Diagramme Schnittpunkte mit Seg- menten suchen Neues aktives VD Mittelsenkrechte zuwischen den aktiven VD

Vereinigung Schnittpunkte suchen

Vereinigung Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Schnittpunkte suchen

Vereinigung Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen Mittelsenkrechte der aktiven VD

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen

Vereinigung Nächsten relevanten Schnittpunkte suchen Neues aktives VD suchen Verknüpfung mit der Mittel- senkrechten vom Anfang

Konstruiere den trennenden Kantenzug als Verbindung der beiden Mittelsenkrechten gegeben: die beiden oberen und unteren Mittelsenkrechten g und g* die zugehörigen oberen Voronoi-Regionen seien P und Q Solange die untere Mittelsenkrechte noch nicht erreicht ist Bestimme für die aktuelle Mittelsenkrechte die Austrittspunkte p und q aus den aktuellen Voronoi-Regionen, die zugehörigen Kanten die zugehörigen Nachbarn P‘ und Q‘ wenn p höher ist als q ersetze P durch P‘ und schneide g an der Stelle p ab wenn q höher als p ersetze Q durch Q‘ und schneide g an der Stelle q ab bestimme die aktuelle Mittelsenkrechte g des neuen Paares P, Q

Länge des Kantenzuges im Worst Case O(n)

Größenordnung des Kanten-Umrings im worst case O(n)

war jetzt alles umsonst? O(n) * O(n) = O(n2) ? war jetzt alles umsonst? Kantenzug ist monoton Voronoi-Regionen sind konvex

Keine Kante öfter als zwei mal anfassen! O(n) * O(n) = O(n2) ? Keine Kante öfter als zwei mal anfassen! Voronoi-Regionen sind konvex Kantenzug ist monoton

„Investitionen müssen sich amortisieren“ Ziel: keine Kante mehr als zwei mal „anfassen“ Es gibt insgesamt höchstens 3* n – 6 Kanten  O(n) Konvexität der Voronoi-Regionen  höchstens zwei Schnittpunkte mit der aktiven Halbgeraden Es genügt, die linken (grünen) Kantenumringe im Uhrzeigersinn und die rechten (roten) Kantenumringe gegen den Uhrzeigersinn zu durchlaufen und den zuletzt gefundenen und verworfenen Schnittpunkt als Haltepunkt zu merken!