Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

STATISIK LV Nr.: 0028 SS 2005 23. Mai 2005.

Ähnliche Präsentationen


Präsentation zum Thema: "STATISIK LV Nr.: 0028 SS 2005 23. Mai 2005."—  Präsentation transkript:

1 STATISIK LV Nr.: 0028 SS 2005 23. Mai 2005

2 Zufallsvariable Zufallsvariable: Variable deren Wert vom Zufall abhängt (z.B. X, Y, Z) Bsp. Zufallsexperiment: 2-maliges Werfen einer Münze. Frage: Wie oft erscheint „Zahl“? Mögliche Werte: 0, 1, 2. Variable „Anzahl Zahl“ hängt vom Zufall ab – Zufallsvariable. Realisation (Ausprägung): Wert, den eine Zufallsvariable X annimmt (z.B. x, y, z). Bsp. 2-maliges Werfen einer Münze, ZV X „Anzahl Zahl“, Ausprägungen: x1=0, x2=1, x3=2.

3 Zufallsvariable Zufallsvariable: Funktion, die jedem Elementarereignis eine bestimmt reelle Zahl zuordnet, z.B. X(ej)=xi Definitionsbereich einer ZV: Ereignisraum S des zugrundeliegenden Zufallsexperiments. Wertebereich einer ZV: Menge der reellen Zahlen.

4 Zufallsvariable Diskrete Zufallsvariable: ZV mit endlich vielen oder abzählbar unendlich vielen Ausprägungen Stetige Zufallsvariable: können (zumindest in einem bestimmten Bereich der reellen Zahlen) jeden beliebigen Zahlenwert annehmen.

5 Wahrscheinlichkeit Diskrete Zufallsvariable:
Wahrscheinlichkeit, mit der eine diskrete ZV X eine spezielle Ausprägung xi annimmt, W(X=xi): Summe der Wahrscheinlichkeiten derjenigen Elementarereignisse ej, denen Ausprägung xi zugeordnet ist:

6 Wahrscheinlichkeitsfunktion
Wahrscheinlichkeitsfunktion einer diskreten ZV: Funktion f(xi), die für jede Ausprägung der ZV (unterschiedliche Ausprägungen xi einer ZV X) die Wahrscheinlichkeit ihres Auftretens angibt: f(xi) = W(X=xi) Eigenschaften: f(xi) ≥ 0 i=1,2,… Σi f(xi) = 1

7 Verteilungsfunktion Verteilungsfunktion einer diskreten ZV: Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Es gilt: Treppenfunktion

8 Verteilungsfunktion Verteilungsfunktion einer stetigen ZV (kann in einem bestimmten Intervall jeden beliebigen Wert annehmen): Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Stetige Funktion

9 Verteilungsfunktion Eigenschaften einer stetigen Vt-Funktion:
1. 0 ≤ F(x) ≤ 1 2. F(x) ist monoton wachsend (d.h. für x1 < x2 gilt F(x1) ≤ F(x2) 3. lim x→-∞ F(x) = 0 4. lim x→∞ F(x) = 1 5. F(x) ist überall stetig

10 Wahrscheinlichkeitsdichte
Wahrscheinlichkeitsdichte (Dichtefunktion) f(x) einer stetigen ZV: Ableitung der Verteilungsfunktion. Es gilt:

11 Wahrscheinlichkeitsdichte
Eigenschaften: 1. f(x) ≥ 0 2. 3. 4. W(X=x) = 0 5. W(a ≤ X ≤ b) = W(a < X < b) 6. W(X ≤ a) = F(a) W(X ≤ b) = F(b) W(a ≤ X ≤ b) = F(b) – F(a)

12 Parameter Charakterisierung der Wahrscheinlichkeits-verteilung von Zufallsvariablen durch Parameter (Maßzahlen) Erwartungswert E(X) = Lageparameter (Entspricht dem arithm. Mittel) Varianz Var(X) = Streuungsparameter

13 Erwartungswert Diskrete ZV: Stetige ZV:

14 Varianz Diskrete ZV: Stetige ZV: Standardabweichung:

15 Standardisierung Lineare Transformation: Y = a + bX
Spezialfall Standardisierung: a = – E(X) / σX b = 1 / σX Standardisierte Variable Z: Es gilt: E(Z) = 0 und Var(Z) = 1

16 Theoretische Verteilungen
Bedeutung von theoretische Verteilungen Deskriptive Statistik: Approximative funktionsmäßige Beschreibung empirisch beobachteter Häufigkeitsverteilungen Mathematische Statistik: Wahrscheinlichkeiten für Ergebnisse bestimmter Zufallsexperimente

17 Kombinatorik Wie kann eine gegebene Anzahl von Elementen unterschiedlich angeordnet und zu Gruppen zusammengefasst werden? Wie viele Möglichkeiten gibt es, n Elemente anzuordnen? Anzahl der möglichen Permutationen? Wie viele Möglichkeiten gibt es, von n Elementen k auszuwählen? Anzahl der möglichen Kombinationen?

18 Kombinatorik Permutationen: n voneinander verschiedene Elemente:
n! = n·(n-1)·(n-2)·…·1 Permutationen Bsp.1: n=3, Elemente e1, e2, e3. Anzahl der möglichen Permutationen: 3! = 3·2·1 = 6 (e1, e2, e3) (e1, e3, e2) (e2, e1, e3) (e2, e3, e1) (e3, e1, e2) (e3, e2, e1) Bsp.2: n=10, Anzahl der möglichen Permutationen: 10! =

19 Kombinatorik n Elemente, wobei ni Elemente vom Typ i sind (r unterschiedliche Typen): Bsp.1: n=10, r=3 und n1=3, n2=5, n3=2, Anzahl der möglichen Permutationen:

20 Kombinatorik Kombinationen:
Aus n verschiedene Elemente sollen k Stück gewählt werden Kombination ohne Wiederholung: jedes Element kann nur einmal gewählt werden Berücksichtigung der Reihenfolge: Anzahl der Möglichkeiten: Keine Berücksichtigung der Reihenfolge:

21 Kombinatorik Kombinationen ohne Wiederholung:
n=3, k=2, Elemente e1, e2, e3. Berücksichtigung der Reihenfolge: Möglichkeiten: (e1, e2) (e2, e1) (e1, e3) (e3, e1) (e2, e3) (e3, e2), also 3!/(3-2)! = 6 Möglichkeiten Keine Berücksichtigung der Reihenfolge: Möglichkeiten: (e1, e2), (e1, e3) (e2, e3), also 3!/(2!(3-2)!) = 3 Möglichkeiten

22 Kombinatorik Kombinationen ohne Wiederholung:
Bsp.1: Lotto, Möglichkeiten aus 49 Zahlen 6 zu wählen (Reihenfolge unberücksichtigt) Bsp.2: Pferderennen, sind 8 Pferde am Start, gibt es für die Belegung der ersten 3 Plätze 8!/(8-3)! = 336 Möglichkeiten

23 Kombinatorik Aus n verschiedene Elemente sollen k Stück gewählt werden
Kombination mit Wiederholung: ein Element kann auch mehrfach ausgewählt werden. Berücksichtigung der Reihenfolge Anzahl der Möglichkeiten: nk Keine Berücksichtigung der Reihenfolge Anzahl der Möglichkeiten:

24 Kombinatorik Kombination mit Wiederholung:
n=3, k=2, Elemente e1, e2, e3. Berücksichtigung der Reihenfolge, Möglichkeiten: (e1, e1), (e1, e2), (e1, e3), (e2, e2), (e2, e1), (e2, e3), (e3, e3), (e3, e1), (e3, e2), Anzahl der Möglichkeiten: nk = 3² = 9 Keine Berücksichtigung der Reihenfolge, Möglichkeiten: (e1, e1), (e1, e2), (e1, e3), (e2, e2), (e2, e3), (e3, e3), Anzahl der Möglichkeiten: (3+2-1)! / (2!·(3-1)!) = 4! / (2!·2!) = 6

25 Kombinatorik Kombinationen mit Wiederholung:
Bsp.1: Würfelt man viermal hintereinander, sind 64 = Abläufe möglich Bsp.2: Hat man vier verschiedene Sorten Süßigkeiten, gibt es 286 Möglichkeiten eine Tüte mit 10 Süßigkeiten zu füllen.

26 Theoretische Verteilungen
Diskrete Verteilungen Binomialverteilung Hypergeometrische Verteilung Poissonverteilung ... Stetige Verteilungen Gleichverteilung Exponentialverteilung Normalverteilung Chi-Quadrat Verteilung t-Verteilung (Studentverteilung) F-Verteilung

27 Binomialverteilung Wahrscheinlichkeiten für die Häufigkeit des Eintreffens bestimmter Ereignisse bei Bernoulli-Experimenten berechnen. Bernoulli-Experiment: Folge von Bernoulli-Versuchen. Urnenmodell mit Zurücklegen Es gibt nur 2 mögliche Ausgänge: A und Ā Wahrscheinlichkeiten für Eintreten von A (θ) und Ā (1- θ) sind konstant Versuche sind voneinander unabhängig.

28 Binomialverteilung Bsp. Bernoulli-Experiment:
fünfmaliges Werfen einer Münze, Zufallsvariable X „Anzahl der Zahlen“, Realisation x = 0, 1, 2, 3, 4, 5 Wahrscheinlichkeiten für Eintreten von A: W(X=x) = f(x) = ?

29 Binomialverteilung Wahrscheinlichkeit des Auftretens einer bestimmten Realisation x: W(X=x) = f(x) Wahrscheinlichkeitsfunktion der Binomialverteilung:

30 Binomialverteilung Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass genau 2-mal Zahl geworfen wird: W(X=2)

31 Binomialverteilung Wahrscheinlichkeit, dass die Zufallsvariable X höchstens den Wert x annimmt: Verteilungsfunktion FB(x;n,θ)

32 Binomialverteilung Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass höchstens 2-mal Zahl geworfen wird: W(X  2)

33 Binomialverteilung Erwartungswert der Binomialverteilung: E(X) = n·θ
Varianz der Binomialverteilung: Var(X) = n·θ·(1-θ) Bsp. Münzwurf: E(X) = 5·0,5 = 2,5 Var(X) = 5·0,5·(1-0,5) = 1,25

34 Hypergeometrische Verteilung
Urnenmodell Ziehen ohne Zurücklegen: Urne mit N Kugeln (M schwarze, N-M weißen) Zufallsstichprobe: ziehe n Kugeln ohne Zurücklegen Wahrscheinlichkeit, dass unter den n gezogenen Kugeln genau x schwarze zu finden sind? Ziehen ohne Zurücklegen, keine Berücksichtigung der Reihenfolge.

35 Hypergeometrische Verteilung
Urnenmodell: Aus M schwarzen Kugeln genau x auswählen: Anzahl der Kombinationen Aus N-M weißen Kugeln genau n-x auswählen: Anzahl der Kombinationen Jede mögl. Stpr. „x schwarze aus M“ kann mit jeder mögl. Stpr. „n-x weiße aus N-M“ kombiniert werden. Daher: Gesamtzahl der Möglichkeiten genau x schwarze zu ziehen: Gesamtzahl der Möglichkeiten aus N Kugeln n zu ziehen:

36 Hypergeometrische Verteilung
Wahrscheinlichkeit genau n schwarz Kugeln zu ziehen: Wahrscheinlichkeitsfunktion der Hypergeometrischen Verteilung:

37 Hypergeometrische Verteilung
Verteilungsfunktion: Summation der Einzelwahrscheinlichkeiten Liefert Wahrscheinlichkeit für „höchstens x schwarze Kugeln“

38 Hypergeometrische Verteilung
Bsp. Sortiment von N=8 Dioden, es werden n=3 zufällig gezogen (ohne Zurücklegen), M=5 der Dioden sind defekt. Ges: Wahrscheinlichkeit, dass genau 2 (=x) der 3 gezogenen Dioden defekt sind.

39 Hypergeometrische Verteilung
Erwartungswert: E(X) = n · M/N Varianz Var(X) = n · M/N · (N-M)/N · (N-n)/(n-1) Approximation durch Binomialverteilung: Wenn N, M, N-M groß und n klein, Parameter der Binomialverteilung: θ = M/N Faustregel: Approximation, wenn n/N < 0,05


Herunterladen ppt "STATISIK LV Nr.: 0028 SS 2005 23. Mai 2005."

Ähnliche Präsentationen


Google-Anzeigen