Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Berufsbild Mathematiklehrer/in 06.11.2013 Mag. Günther Biller.

Ähnliche Präsentationen


Präsentation zum Thema: "Berufsbild Mathematiklehrer/in 06.11.2013 Mag. Günther Biller."—  Präsentation transkript:

1 Berufsbild Mathematiklehrer/in Mag. Günther Biller

2 Jahrgang 1954 Matura 1973 an der HTBLuVA Bregenz Studium der Mathematik und Geographie an der Universität Innsbruck 33 Jahre Unterricht am Gymnasium Fachkoordinator für Mathematik 10 Jahre Unterricht bei der Berufsreifeprüfung

3 Bundesgymnasium Bregenz Blumenstraße Eines der 12 Gymnasien in Vorarlberg Gymnasiale Langform Derzeit noch ein musischer Zweig Fast 1000 Schüler/innen in 40 Klassen Ca. 100 Lehrer/innen 9 Mathematiklehrer/innen

4 Programm 1. Die wichtigsten Lehrtätigkeiten 2. Kompetenzen der Mathematiklehrer/innen 3. Beispiele aus verschiedenen Jahrgangsstufen

5 1.Lehrtätigkeiten Unterrichten – Stoffvermittlung Unterrichtsvorbereitung Korrekturen – Beurteilung

6 Weitere Lehrtätigkeiten Erziehen Gespräche mit Kolleg/innen Gespräche mit Eltern Organisieren – Verwalten Fortbildung Dienstbesprechungen Beratung von Schüler/innen Tag der offenen Tür Lehrausgänge etc

7 Unterricht an einer AHS Schüler/innen oft 8 Jahre lang begleiten Unterstufe – Oberstufe Reine Mathematik (Grundlagen) – Angewandte Mathematik

8 2. Klasse – fragend- entwickelnder Unterricht

9 8. Klasse – gelenktes Lernen im Klassenverband

10 Kompetenzorientierter Unterricht Im Vordergrund steht das Können, nicht das kurzfristige Bestehen von Prüfungen Neben dem Rechnen Können stehen das mathematische Denken und Argumentieren im weitesten Sinn Lernen bedeutet weniger das Einpauken von Übungsbeispielen, sondern das grundlegende Verstehen mathematischer Sachverhalte

11 Kompetenzorientierter Unterricht (Schulbücher) Auflistung der Grundkompetenzen Einteilung der Aufgaben in zwei Kategorien (Grundkompetenzen und Vertiefungen) Neue Aufgabenformate; Zuordnungsaufgaben - Ankreuzen Aufgaben zur Selbstkontrolle (Kompetenzcheck) Anregungen für vorwissenschaftliche Arbeiten

12 Unterrichtsvorbereitung Jahresplanung: Lehrplan unter Planung von Unterrichtseinheiten Erstellen von Arbeits- und Übungsblättern (www.bifie.at, Prüfungsfragen Schularbeiten

13 Beurteilung: Wiederholungsprüfungen

14 Schularbeiten Anzahl und Länge werden von der Fachkonferenz festgelegt Beispiel 2.Klasse: 5 Schularbeiten á 40 min; 7.Klasse: vier zweistündige Schularbeiten Alle mehrstündigen Schularbeiten sind jetzt zweigeteilt zu gestalten (siehe zentrale Reifeprüfung)

15 Korrekturen - Beurteilung Korrigieren von Schularbeiten (einheitlicher Punkteschlüssel) Korrigieren von Hausübungen Korrigieren von Fachbereichsarbeiten bzw. vorwissenschaftlichen Arbeiten

16 Schriftliche Reifeprüfung Derzeit noch: Die Matura wird von der oder den Lehrpersonen zusammengestellt. Im Allgemeinen vier bis sechs Aufgaben. Ab 2015: Standardisierte kompetenzorientierte Reifeprüfung. Unterteilung in Typ1- und Typ2- Aufgaben.

17 Mündliche Reifeprüfung Derzeit sind Kern- und Spezialfragen von den Lehrpersonen zu stellen. Mögliche Spezialgebiete sind alle in der Oberstufe vorkommenden Themen vertiefend und ergänzende Themen wie z.B. Differentialgleichungen, Finanzmathematik, Anwenden der Integralrechnung in der Physik Ab 2015 muss es an jeder Schule einen Themenkatalog geben; die Aufgaben sind dem anzupassen, die Themen werden gezogen.

18 Themenkatalog Zahlenbereiche und Rechengesetze Lineare und quadratische Gleichungen Quadratische Gleichungen und Funktionen Systeme mehrerer Gleichungen mit mehreren Variablen ……

19 Themenkatalog …… Beschreibende Statistik Grundlagen der Wahrscheinlichkeitsrechnung Diskrete Wahrscheinlichkeitsverteilungen Stetige Wahrscheinlichkeitsverteilungen

20 Erziehen Pädagogische Kompetenz Vorschriften und Reglementierungen (SGA) Verantwortung der Lehrperson für die Disziplin in der Klasse

21 Konferenzen

22 Fachkonferenzen

23 Fachkonferenz Absprache bzgl. Lehrstoff und Schularbeiten immer wichtiger Gemeinsame Aufgabenstellung bei der Matura (2014) Austausch von Dateien zur Unterrichts- vorbereitung und Übungsblättern Themenkatalog für die mündliche Reifeprüfung

24 Fachkonferenz Taschenrechner: einheitlich TI82STATS in der gesamten Oberstufe Verpflichtender Einsatz eines CAS ab dem kommenden Schuljahr

25 Gespräche mit Eltern Elternabende Elternsprech- tage Sprechstunden

26 Frühwarnsystem §19 Abs. 3 Bei drohender negativer Beurteilung (auch schon im ersten Semester) Information, Erörterung und Beratung Festlegung von Fördermaßnahmen

27 Lernwerkstatt Förderprogramm am BG Blumenstraße Angebot in Mathematik und Sprachen an zwei Nachmittagen pro Woche Die Lernwerkstatt bietet Schüler/innen die Möglichkeit, in angenehmer Atmosphäre offene Fragen zum Lernstoff, bei Hausaufgaben und bei der Vorbereitung auf Schularbeiten zu klären.

28 Organisieren - Verwalten Unterrichtsmaterialien Känguru der Mathematik Mathematik Miniolympiade (Unterstufe) Österreichische Mathematik- Olympiade für die Schüler/innen des Wahlpflichtfachs

29 2. Kompetenzen der Lehrpersonen Fachliche Kompetenz Fachdidaktik Pädagogik Sozialkompetenz

30 3. Beispiele aus verschiedenen Jahrgangsstufen 8. Klasse – Teil-1-Aufgabe zur Grundkompetenz AN 4.2: Einfache Regeln des Integrierens kennen und anwenden können: Potenzregel, Summenregel, k f(x)dx, f(k x)dx ; bestimmte Integrale von Polynomfunktionen ermitteln können.

31 8. Klasse: Analysis

32 7. Klasse – Differentialrechnung und Analytische Geometrie Grundbegriffe der Differentialrechnung – Grundkompetenzen - Auswahl Den Differentialquotienten kennen und interpretieren können Die Leibniz´sche Schreibweise für den Differenzen- und Differentialquotienten kennen Den Begriff der Tangente als Grenzlage von Sekanten kennen und erläutern können Steigungen von Funktionsgraphen interpretieren können …

33 Partielle Ableitungen einer zweistelligen Funktion z = f(x,y) = 4x² - xy + y²

34 Elliptisches Paraboloid mit Tangentialebene (Derive)

35 Bildungsziele Mathematik (Bildungsstandards) Modellieren Probleme lösen Darstellungen verwenden Argumentieren Kommunizieren

36 Quadratische Funktion Typ 2 Aufgabe Ein Betrieb produziert x Stück einer Ware, wobei die Produktionskosten K(x) näherungsweise durch die Funktion K(x) = x²/8 + x + 2 berechnet werden können (Kosten in Geldeinheiten GE). Der Erlös E(x) wird unter der Annahme berechnet, dass die gesamte produzierte Menge x auch verkauft werden kann. Der Verkaufspreis pro Stück beträgt 6 Geldeinheiten (6 GE).

37 Quadratische Funktion Typ 2 Aufgabe Offene Variante: Informiert den Firmeninhaber über den Gewinn in Abhängigkeit von der Produktionszahl! Zuletzt wurden 50 Stück produziert. Was bedeutet das für den Betrieb und welche Konsequenzen können gezogen werden?

38 Quadratische Funktion Typ 2 Aufgabe Engere Variante: Stelle eine Gewinnfunktion auf! Um welche Art von Funktion handelt es sich? Was kann man dem Firmeninhaber über seinen Gewinn in Abhängigkeit von den Produktionszahlen sagen? Ermittle die Stückzahl x, für die gilt E(x) = K(x) und interpretiere das Ergebnis. Bei welcher Produktionszahl wird maximaler Gewinn erzielt? Zuletzt wurden 50 Stück produziert und Verluste geschrieben. Formuliere zwei Lösungsvorschläge um wieder Gewinn zu machen und begründe diese.

39 Quadratische Funktion Kompetenz laut Bifie-Katalog vom März 2013 Wenn Expertinnen und Experten Mathematik verwenden, bedienen sie sich oftmals des Werkzeugs der Funktionen. Für eine verständige Kommunikation ist es daher notwendig, mit der spezifischen funktionalen Sichtweise verständig und kompetent umzugehen. Das meint, die Aufmerksamkeit auf die Beziehung zwischen zwei Größen in unterschiedlichen Kontexten fokussieren zu können.

40 Quadratische Funktion Kompetenz laut Bifie-Katalog vom März 2013 Grundkompetenzen zu: Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften: FA 1.6 Schnittpunkte zweier Funktionsgraphen grafisch und rechnerisch ermitteln und im Kontext interpretieren können.

41 Quadratische Funktion Technologieeinsatz (TI 82 STATS)

42 Quadratische Funktion Technologieeinsatz (GeoGebra)

43 2. Klasse – Rechnen mit Bruchzahlen

44 2. Klasse Addieren von Brüchen

45 Ende Vielen Dank für ihre Aufmerksamkeit und Viel Erfolg beim Studium und bei ihrer späteren (Lehr)Tätigkeit


Herunterladen ppt "Berufsbild Mathematiklehrer/in 06.11.2013 Mag. Günther Biller."

Ähnliche Präsentationen


Google-Anzeigen