Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Einflüsse und Effektmodifikation (Interaktionen) in den kurzfristigen Effekten von Immissionspartikeln auf die Gesamtsterblichkeit: Ergebnisse von 29 europäischen.

Ähnliche Präsentationen


Präsentation zum Thema: "Einflüsse und Effektmodifikation (Interaktionen) in den kurzfristigen Effekten von Immissionspartikeln auf die Gesamtsterblichkeit: Ergebnisse von 29 europäischen."—  Präsentation transkript:

1 Einflüsse und Effektmodifikation (Interaktionen) in den kurzfristigen Effekten von Immissionspartikeln auf die Gesamtsterblichkeit: Ergebnisse von 29 europäischen Städten innerhalb des APHEA Projekts Caren Körber

2 2 APHEA 2 – Die Studie 30 europäische Städte (Bukarest, Rumänien aufgrund von 37% fehlender Werte ausgeschlossen) Untersuchungszeitraum umfasste mehr als 5 Jahre (1826 Tage) Gesamtpopulation von 43 Millionen Probanden Benutzt wurden tägliche Messungen von Feinstaubpartikeln (PM) oder Black Smoke (Rußpartikel) Erhoben wurden Konzentrationen von Schwefeldioxid (SO 2 ), Stickstoffdioxid (NO 2 ) und Ozon (O 3 )

3 3 Datengewinnung Messungen durch Messstationen innerhalb eines Überwachungsnetzwerks in jeder Stadt EU Gesetzgebung regelt die Messungen der Luftschadstoffe EU-Direktive für PM 10 -Messungen nicht angewandt Durchschnitt der täglichen PM-bedingten Sterbefälle nach International Classification of Diseases klassifiziert Einbeziehung der Messstationen, wenn Vollständigkeitskriterien erfüllt

4 4 Definition Feinstaubpartikel (PM) und Black Smoke (BS) PM 10 repräsentiert Partikel mit aerodynamischen Durchmesser < 10 m Immissionspartikel sind ein Mix von unterschiedlichen physikalischen und chemischen Eigenschaften Hinweise, dass Partikel mit geringem aerodynamischen Durchmesser (10 oder 2.5 m oder kleiner) einen relevanteren Einfluss auf die menschliche Gesundheit haben Konzentration von Rußpartikeln mit einem aerodynamischen Durchmesser von < 4.5 m Relevanter Marker von primären Verbrennungsprodukten In Europa hat Messung von Rußpartikeln eine Lange Tradition und gilt als gebräuchlichster Indikator von Partikeln

5 5 Deskription

6 6 Durchschnitt der täglichen Sterbefälle schwankte zwischen 6 und 169 Durchschnitt unter den Älteren Personen (> 65 Jahre) zwischen 4 und 139 Mediane von BS- und PM 10 -Konzentration zwischen 9 und 64 (BS)und 14 und 166 g/m 3 (PM 10 )

7 7 Berechnung der fehlende Werte Fehlender Wert am Tag i im Jahr k von der Messstation j wurde durch den gewichteten Durchschnitt der Werte der anderen Messstationen ersetzt Mittelwert Tag i im Jahr k über alle Stationen Gesamtmittelwert im Jahr k

8 8 Fehlende PM 10 -Messungen In 10 Städten liegen die PM 10 -Messungen nicht für den gesamten Zeitraum vor Geschätzt wurden diese Werte durch – Regressionsmodell mit Bezug von geordneten PM 10 -Messungen auf BS (Athen, Krakau) – Gesamtschwebepartikelmessungen (Budapest, Erfurt) – Prozentsatz der Gesamtschwebeteilchen (basierend auf Messungen für andere Städte)

9 9 Unterschiede Confounder und Effekt-Modifikation Confounder sind mit Exposition korreliert Confounder sind selbst Einflussgrößen Verschmutzung verdeckt den Effekt der Exposition Effekt hängt von der Größe einer Kovariablen ab Interaktion

10 10 Confounder Benutzung von meteorologischen Variablen um Einflussgrößen zu kontrollieren (tägliche Durchschnittstemperatur, relative Feuchtigkeit) Hinzunehmen von Informationen über Grippe-Epidemien und ungewöhnliche Ereignisse wie Hitzewellen Adjustierung des Modells nach Wochentag, Nationalfeiertage, Schulferien, Jahreszeiten und langfristigen Trends Korrelationskoeffizienten für potentielle Einflüsse durch Confounder PM 10 – NO – 0.75 PM 10 – O – PM 10 – SO – 0.78 BS – NO – 0.65 BS – O – BS – SO – 0.77

11 11 Effekt-Modifizierer Wesentliche Heterogenität in den Schätzern der Effektparametern beobachtet, daher war es wichtig Informationen über einige Variablen zusammeln, die als Effektmodifizierer vermutet wurden Variablen umfassen Eigenschaften der Städte, d.h. ein Wert pro Stadt, der eine bestimmte Situation charakterisiert, wie z.B. Klima und Luftverschmutzungsquellen Potentiellen Interaktionen in vier Kategorien unterteilt

12 12 Luftverschmutzungsgrad und Zusammensetzung Beinhaltet: – Durchschnittslevel an PM (PM 10 und BS) und anderen Schadstoffen für die gesamte Studienperiode – das Verhältnis von PM 10 und BS zu NO 2 Das Verhältnis von PM zu NO 2 kennzeichnet den Umfang inwieweit PM verkehrsbedingt ist NO 2 hauptsächlich durch Verkehr verursacht Niedrige PM/NO 2 -Ratio kennzeichnet höheren Anteil von verkehrsverursachten PM

13 13 Klimatische Variablen Bisher wird angenommen, dass geschätzter Effekte der Luftverschmutzung durch das Klima modifiziert wird Theorie wird durch saisonale und geographische Unterschiede unterstützt Um Stadtklima zu charakterisieren wurde die mittlere Temperatur und relative Feuchtigkeit über die gesamte Studiendauer aufgezeichnet Mittlere jährliche Tagestemperatur schwankte zwischen 5.9 o C in Helsinki und 17.8 o C in Athen Mittlere relative Feuchtigkeit schwankte zwischen 48.9% in Marseille und 82.3% in Dublin

14 14 Gesundheitsstatus der Bevölkerung Luftverschmutzung beeinträchtigt gewisse Subgruppen der Bevölkerung in größerem Maße Subgruppen sind ältere Personen, die unter chronischen kardio- respiratorischen Krankheiten leiden Indikatoren für die Größe dieser Gruppe sind: – die altersadjustierte Sterblichkeitsrate – die Lungenkrebssterblichkeitsrate (28 bis 92 Tote/ Personenjahre ) beide für Einwohner/Stadt – der Prozentsatz der Personen die älter als 65 Jahre sind (9-21%) – die Rauchprävalenz (22 und 55%) Standardisierte jährliche Gesamtzahl der Sterbefälle pro – Schwankt in Lyon von 579 bis 1231 in Lodz – 15 Städten unter 800, in – 9 Städten zwischen 800 und 1000 – 5 Städten über 1000

15 15 Geographisches Gebiet Im Vorfeld wurde beobachtet, dass die Größe des Effekts sich in geographischen Gebieten unterscheidet Unterteilung in drei Klassen unterteilt: 1. Zentraler-Osten: – alle Städte der ehemaligen kommunistischen Länder (Budapest, Krakau, Erfurt, Ljubljana, Lodz, Posen, Prag, Teplice, Wroclaw) 2. Südstaaten: – Breitengrad < 45 o (Athen, Barcelona, Bilbao, Madrid, Marseille, Rom, Tel Aviv, Valenzia) 3. Nord-Westen: – alle anderen Länder

16 16 Auswertung Hierarchisches (Annäherungs-)Modell Schritt 1: – gefittetes Regressionsmodell für jede Stadt – Ermöglicht Kontrolle saisonaler Effekte und möglicher Confounder 2. Schritt: – Ergebnisse der Einzelanalysen werden in einem Modell zusammengefasst – Ziel: Gesamtschätzer und potentielle Interaktionen

17 17 Einzelauswertung der Stadtdaten Ziel: – Entwicklung eines Stadtspezifischen Modells für jede Stadt Auswertung durch – Verwendung von generalisierten additiven Modellen – Erweiterung der GAMs auf Poisson-Regression um nicht- lineare Effekt der Kovariablen zu modellieren – Benutzung nicht-parametrischer Loess-Glätter um saisonale Muster und langfristige Trends zu kontrollieren – Anwendung von Overdispersion – Nutzung von linearen Termen – Auswertung auf Tage mit PM 10 /BS-Konzentration < 150 g/m 3 begrenzt

18 18 Modellzusammensetzung Modellerweiterung um meteorologische Variablen Beobachtet wurden glättende Funktionen des gleichen Tages und dem Unterschied zu zwei Tagen oder der Unterschied über 0 und 2 Tagen des Tagesdurchschnittstemperatur und relativen Feuchtigkeit Werte des gleichen Tages wurden miteinbezogen Einbeziehung der Wettervariablen und Wahl der Smoothing Parameter wurde unter Minimierung des AIC (=Akaike´s Information Criterion) durchgeführt

19 19 Das Grundmodell - GAM Generalisiertes additives Modell f 1,...,f p sind unspezifische, unbekannte Funktionen, welche geschätzt werden x i1,...,x ip Vektor der Kovariablen der Stadt i kann eine Funktion von originalen Kovariablen, inklusive z.B Interaktionen, sein

20 20 Loglineares Poisson-Modell Zielgröße: Y=Anzahl der Todesfälle -> Poisson-Modell exp sichert E(Y)>0, dient der Interpretierbarkeit in multiplikativer Form

21 21 Erklärung Dividieren der oberen durch die untere Formel liefert exp(ß k ) exp(ß k )-1 ergibt so die prozentuale Zunahme der Todesfälle

22 22 Modellerweiterung Aufnahme von Dummy Variablen für: Wochentage Ferientage Ungewöhnliche Ereignisse Tägliche Zahl der Grippefälle Tägliche Zahl der Grippefälle nicht in jeder Stadt verfügbar, daher auf Basis einer sensitiven Auswertung, Kontrolle dieses Effekts durch Dummy Variablen

23 23 Zweite Stufe der Auswertung Das hierarchische Modell Dient der quantitativen Zusammenfassung der Einzelanalysen Klärung der Heterogenität Schätzung fester Effekte für gepoolte Regressionskoeffizienten durch gewichtete Regression für stadtspezifische Schätzer von potentiellen Interaktionen Regressionsmodell mit Zufallseffekten, wenn substanzielle Heterogenität zwischen den Ergebnissen der einzelnen Städten verbleibt Varianz zwischen den Schätzern durch die Daten, durch Verwendung der Maximum-Likelihood-Methode nach Berkley et al, geschätzt

24 24 Hierarchisches Modell b i = z z z i = Vektor der Effekt- modifikationen in einer Stadt = Vektor der Regressions- koeffizienten = Kovarianzmatrix; bestehend aus geschätzten Varianzen der Einzelstädte

25 25 Fixed-Effekte Modell Wird benötigt für uni- bzw. multivariate Regressionsmodelle Schätzung von gepoolten fixed-Effekte Regressionskoeffizienten über die gewichtete Regression der stadtspezifischen Schätzer mit den gewichteten potentiellen Interaktionen – Gewichtete Interaktionen: Gewichtung besteht aus den Varianzen der Einzelstadtanalyse Dient der Reduzierung der Heterogenität unter den Städten Interaktion aus Stadt mit hoher Varianz bei Einzelauswertung erhält niedrigere Gewichtung Interaktion aus Stadt mit geringer Varianz geht mit einer hohen Gewichtung ein

26 26 Zufallseffekte Modell Anwendung wenn Heterogenität zwischen den Städteergebnissen verbleibt Es wird davon ausgegangen, dass die individuellen Koeffizienten ein Sample von unabhängigen Beobachtungen der Normalverteilung sind Mittelwert = Schätzung der gepoolten Zufallseffekte Varianz = Varianz zwischen den Städten

27 27 Zweistufiges Modell mit Interaktionen für PM 10 Zeigt die resultierende Schätzer für PM 10 -Effekte einer Stadt, die durch einen Wert der Interaktionen charakterisiert werden. Diese erklären >10% der vorliegende Heterogenität Wert gleich dem 25. (unteren) und 75. (oberen) Percentil der verwendeten Interaktion Unter potentiellen Interaktionen Betrachtung der Schadstoffe : – NO 2 wichtigste Interaktion – Andere Schadstoffe spielen keine Rolle – Niedriges Verhältnis PM 10 zu NO 2 ist verbunden mit höheren PM 10 -Effekt – Gilt auch für Temperatur, Feuchtigkeit, altersstandardisierte Sterblichkeitsrate, die Größe von der Gruppe der Älteren und dem geographischen Gebiet – Lungenkrebssterblichkeit, Rauchprävalenz keinen Einfluss – Wichtigste Interaktionen jeder Kategorie (NO 2 -Level, Temperatur, standardisierte Sterblichkeitsrate) wurden mit den anderen in ein zweistufiges Modell mit drei Interaktionen genommen – Meiste Heterogenität erklärt und verbleibende wesentlich reduziert

28 28 Zweistufiges Modell mit Interaktionen für PM 10 Interaktionen ß-KoeffizientGeschätzte Zunahme bei 25. Percentil Geschätzte Zunahme bei 75. Percentil Ko- effizient 95% KI Estimate 95% KI Estimate 95% KI 24 Std. NO PM10/NO Std. Temperatur rel. Feuchtigkeit Altersstand. jährliche Sterberate per

29 29 Ergebnisse für PM 10 Geschätzte Zunahme pro 10 g/m 3 Zunahme von PM 10 der einzelnen Städte schwankt zwischen -0.6% - 1,5% Zunahme der Gesamttodesfälle in Verbindung mit 10 g/m 3 Erhöhung der täglichen PM 10 - Konzentration betrug 0.7% in fixed-Effekte Modell [95% KI: %] Bei Modelle mit Zufallseffekten betrug die Erhöhung der Todesrate 0.6% [95% KI: %]

30 30 Scatterplots für PM 10

31 31 Ergebnisse zweistufige Regression für BS Interaktionen ß-Koeffizient Geschätzte Zunahme bei 25. Percentil Geschätzte Zunahme bei 75. Percentil Koeffizie nt 95% KIEstimate95% KI Estimate95% KI 24 Std. NO BS/NO Std. Temperatu r rel. Feuchtigkeit Altersstand. jährliche Sterberate per

32 32 Ergebnisse zweistufige Regression für BS I Ergebnisse der zweistufigen Regression für die Schätzer der BS-Effekte Geographische Gebiet, NO 2 -Konzentration und Temperatur wichtigsten Effekt-Modifizierer Im zweistufigen Modell mit 4 Interaktionen erklärt es die meiste Heterogenität

33 33 Ergebnisse für BS I Schwankungen je Stadt von –0.2 % bis 1.6% Kombinierte Schätzer für die gleiche Zunahme unter Fixed- Modell betrug 0.5 % [95% KI: %] Modell mit Zufallseffekten: 0.6 [95% KI: %] Todesfälle unter den Älteren (>65 Jahre) bei Zunahme von BS: – Modell mit fixierten Effekten 0.6% [95% KI: %] – Modell mit Zufallseffekten 0.7% [95% KI: %]

34 34 Ergebnisse für BS II Für Test auf Sensitivität der obigen Ergebnisse der Schätzer der PM 10 -Serie fand ein Ausschluss von 10 Städten mit unvollständigen Daten statt Zunahme der kombinierten Schätzer bleibt gleich, d.h. 0.7% Zunahme der Todesfälle war verbunden mit einer Erhöhung von BS um 10 g/m 3. Dies gilt für beide Modelle.

35 35 Scatterplots für BS

36 36 Ergebnisse Zweistufiges Modell Zweistufigen Modell zeigt: Effektparameter der Todesfälle bei den Älteren haben fast identische Muster für BS- und PM 10 -Effekte mit Koeffizientenänderung an zweiter oder dritten signifikanten Stelle Multivariates zweistufiges Regressionsmodell mit geschätzten Effektparametern von PM und NO 2 für jede Stadt als abhängige Variable und durchschnittliche langfristige NO 2 –Konzentration als potentielle Interaktion NO 2 -Höhe blieb als Interaktion nach der Adjustierung nach dem Einfluss der täglichen Schwankungen auf die Parameter der PM- Effekte in jeder Stadt – Stadt mit niedriger NO 2 -Konzentration: Geschätzte adjustierte Zunahme der Sterblichkeit verbunden mit einer 10 g/m 3 Zunahme des PM 10 von 0.11% auf ( BS: 0.11%) – Stadt mit hoher NO 2 -Konzentration: Zunahme 0.51% ( BS: 0.38%)

37 37 2-Schadstoff-Modell Gefittet wurden zudem Modelle mit 2- Schadstoffen Adjustierung nach Confounding-Effekt von SO 2, O 3 und NO 2 CO 2 -Messungen nicht benutzt, da viele Städte lückenhafte oder keine Messungen aufwiesen Serielle Korrelationen in den Residuen wurde berücksichtigt

38 38 Ergebnisse 2-Schadstoffmodell

39 39 Ergebnisse für PM 10 2-Schadstoffmodell Modell für zwei Schadstoffe kombiniert mit der zweistufigen Regression Adjustiert in Reihenfolge der Einflusseffekte von SO 2, O 3 und NO 2 Adjustierung nach SO 2 und O 3 : – Verbindung von PM 10 mit der Gesamtsterblichkeit ist nicht wesentlich durch SO 2 - oder O 3 - Konzentration beeinflusst Adjustierung nach NO 2 : – Geschätzte kombinierte Zunahme der Sterblichkeit für eine Erhöhung von PM 10 um 10 g/m 3 wurde von 0.68% auf 0.35% reduziert

40 40 Ergebnisse für BS 2-Schadstoffmodell Verbindungen von BS mit der Sterblichkeitsanzahl zeigen eine Beeinflussung durch die Höhe des SO 2 und im wesentlichen auch durch die Konzentrationen von NO 2 und O 3 Adjustierung nach NO 2 : – zeigt Reduzierung der geschätzten Zunahme der Gesamtsterblichkeit in Verbindung mit einer Erhöhung der BS- Konzentration von 10 g/m 3 von 0.51% auf 0.26% Adjustiert nach O 3 : – Gesamtsterblichkeit bei gleicher Zunahme der BS- Konzentration stieg von 0.51% auf 0.71%

41 41 Schlussfolgerung aus 2-Schadstoffmodell Es lässt sich schließen, dass in allen zweistufigen Modellen eine wesentliche Heterogenität zwischen den nach anderen Schadstoffen adjustierten Koeffizienten für PM 10 und BS verbleibt Eine Untersuchung der beobachteten Heterogenität in den Effektschätzern für PM 10 und BS wäre sinnvoll, um sie für potentielle Effektmodifikation in der zweiten Stufe der Auswertung in Betracht zu ziehen

42 42 Zusammenfassung und Diskussion Es wurden auch andere Schadstoffe gefunden, die potentielle Confounder und Interaktionen für die Verbindung von PM 10 auf die Sterblichkeit darstellen Es gibt Indizien auf einen komplexen Prozess von Emissionen, Zweitreaktionen, Ort der Aufstellung der Messgeräte und Messfehler, die in Beziehung zu ihrer Repräsentativität für die Bevölkerung stehen PM 10 und BS sind Prediktoren für die täglichen Sterbefälle in Europa, mit ähnlichen Effektschätzer

43 43 Kein Hinweis für den Einfluss von SO 2 und O 3 auf PM 10 SO 2 kein Confounder bei den BS-Effekten O 3 Confounder bei simultaner Kontrolle von O 3 auf BS- Effekten Die Wirkung von PM 10 und BS ist stark durch NO 2 beeinflusst Immissionspartikel haben großen Einfluss auf die Gesundheit

44 44 Heterogenität der einzelnen Schätzer der Stadteffekte unterstützt Vermutung, dass die Zusammensetzung der Partikel sich von Ort zu Ort in einer relevanten Art in bezug auf ihren gesundheitlichen Einfluss unterscheidet Höhere Zunahme der Sterbefälle in Gruppen mit Anteil von älteren Personen (>65 Jahre) von 13% (0.77%), als bei Gruppen mit einem geringeren Anteil (0.64%) Wichtigste Prediktor der Effektgröße ist Ratio von PM 2.5 zu PM 10

45 45 Auswirkungen der Ergebnisse Ergebnisse bestätigen die schon früher berichteten Ergebnisse in Europa und den USA über die Größe des Einfluss der Immissionspartikel auf die Gesamtzahl der täglichen Sterbefälle Zeigen die Heterogenität in den PM Effektparametern von unterschiedlichen Städten und reflektieren die reale Interaktion, welche vielleicht durch charakterisierende Faktoren erklärt werden können, wie z.B. den Luftverschmutzungsmix, Klima und Gesundheit der Population Ergebnisse können wichtige Konsequenzen für Schätzungen des Effekts der Luftverschmutzungen auf die Gesundheit in einer spezifischen Population nach sich ziehen und könnten politische Entscheidungen und Entscheidungen des Umweltmanagements beeinflussen


Herunterladen ppt "Einflüsse und Effektmodifikation (Interaktionen) in den kurzfristigen Effekten von Immissionspartikeln auf die Gesamtsterblichkeit: Ergebnisse von 29 europäischen."

Ähnliche Präsentationen


Google-Anzeigen