Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Nitromethan: polar Tetrachlormethan: unpolar.

Ähnliche Präsentationen


Präsentation zum Thema: "Nitromethan: polar Tetrachlormethan: unpolar."—  Präsentation transkript:

1

2

3

4 Nitromethan: polar Tetrachlormethan: unpolar

5 Beispiel b) Bildung von Tetraethylammoniumiodid Diese Reaktion gibt es in der Gasphase überhaupt nicht, aber sie kann in vielen unpolaren und polaren Lösungsmitteln nachgewiesen werden. Die Geschwindigkeitskonstante ist sehr stark vom Lösungsmittel abhängig. Von n-Hexan (unpolar) bis Nitrobenzol (polar) steigt die Geschwindigkeitskonstante um den Faktor 2700 Diese Reaktion hat einen polaren ÜZ der in LM mit hoher Permittivität (=dielektrische Leitfähigkeit, Dielektrizitätskonstante) stabilisiert wird.

6

7 Das Molekül eines gelösten Stoffes befindet sich ständig in Wechselwirkung mit Molekülen des LM und muss über eine gewisse Strecke durch die Lösung diffundieren, bevor es auf ein anderes reaktionsfähiges Molekül trifft. Die Zahl solcher Zusammenstöße in der Zeiteinheit ist niedriger als in der Gasphase. Wenn sich zwei reaktionsfähige Moleküle aber erst einmal getroffen haben, dann bleiben sie ziemlich lange in unmittelbarer Nachbarschaft, umgeben von einem „Käfig“ aus LM-Molekülen. Innerhalb des Käfigs finden wiederholte Zusammenstöße zwischen ihnen statt (ca. 5-15) bevor sie sich wieder trennen. Die obere Grenze für die Geschwindigkeit einer bimolekularen Reaktion wird in Gasen durch die Stoßhäufigkeit gesetzt, in Flüssigkeiten durch die Häufigkeit der ersten Begegnung zwischen den reagierenden Molekülen, die sich in einer Brown‘schen Bewegung durch die Lösung bewegen.

8 Es kann bei einer Reaktion in Lösung geschehen, dass die Teilchen, wenn sie erst einmal im Käfig sitzen, mit gegen 1 gehender Wahrscheinlichkeit miteinander reagieren. In einem solchen Fall ist die Diffusionsgeschwindigkeit geschwindigkeitsbestimmend für die Reaktion. Die Reaktion ist dann diffusionskontrolliert. Die Temperaturabhängigkeit einer diffusionskontrollierten Geschwindigkeitskonstante ist nur schwach und entspricht der Temperaturabhängigkeit des Diffusionskoeffizienten.

9 Reaktionen in Lösung langsam schnell Geschwindigkeitskonstanten genauso interpretierbar wie bei Gasreaktionen Geschwindigkeitskonstanten abhängig von der Viskosität des Lösungsmittels, Reaktionen sind diffusionskontrolliert

10 Achtung: Sehr hohen Konzentrationen der an der Reaktion beteiligten Spezies können die Eigenschaften des LM verändern: In der Folge tritt eine neue Konzentrationsabhängigkeit der Geschwindigkeitskonstante auf!

11 Die Geschwindigkeitskonstante einer diffusionskontrollierten Reaktion Marian Smoluchowski ( ) entwickelte 1917 ein theoretisches Modell für die Beschreibung der Koagulation kolloidaler Teilchen in Elektrolytlösungen. Dieses Modell ist auch auf andere diffusionskontrollierte Prozesse übertragbar. k dc =diffusionskontrollierte Geschwindigkeitskonstante, kann mit der Smoluchowski-Gleichung berechnet werden.

12 Smoluchowski-Theorie, von Peter Debye auf Reaktionen in Lösung angewendet: Stoßdurchmesser d 12 =r A +r B A und B nähern sich einander aus dem Unendlichen: Die Reaktion erfolgt sofort, wenn der Abstand d 12 erreicht ist. Diffusions- koeffizienten Diese einfache Form der Gleichung gilt nur, wenn keine Wechselwirkungs- Energien zwischen den Molekülen zu berücksichtigen sind.

13 Der Diffusionskoeffizient ist umgekehrt proportional der Viskosität des LM. Stokes-Einstein Gleichung: Viskosität des Lösungsmittels Hydrodynamischer Radius des diffundierenden Moleküls A Da die Viskosität des Lösungsmittels eine Funktion der Temperatur ist, ist die Abhängigkeit des Diffusionskoeffizienten von der Temperatur nicht linear!

14 Somit ist bei einer diffusionskontrollierten Reaktion die Reaktionsgeschwindigkeit abhängig von der Viskosität des LM Solche Geschwindigkeitskonstanten und deren Temperaturabhängigkeit sagen NICHTS aus über die Eigenschaften des aktivierten Komplexes! Falls sich eine Reaktion der diffusions- kontrollierten Grenze nähert, ist ihre Geschwindigkeitskonstante nicht mehr leicht zu interpretieren. diffusionskontrollierte Reaktionen > < aktivierungskontrollierte Reaktionen

15 Interpretation von Geschwindigkeitskonstanten nahe der diffusionskontrollierten Grenze Zweistufiges Schema: – 1. Diffusion der reagierenden Teilchen zueinander und voneinander weg – 2. Reaktion innerhalb des Lösungsmittelkäfigs LM-Käfig

16 Steady-state approximation:

17 Für sehr großes k r gilt: k exp →k dc

18 Ionenreaktionen in Lösungen Die elektrostatischen Kräfte zwischen Ionen beeinflussen bestimmte Eigenschaften wie Aktivitätskoeffizienten und elektr. Leitfähigkeit sowie die Geschwindigkeitskonstanten bei Ionenreaktionen Auch die Dielektrizitätskonstante (=dielektrische Leitfähigkeit) des LM spielt eine wichtige Rolle, da mit abnehmendem ε die elektrostatischen Kräfte zwischen den Ionen zunehmen.

19 Einfluss der Dielektrizitätskonstante ε des Lösungsmittels Zwei Ionen A und B befinden sich im Abstand r zueinander. Die elektrostatische Kraft zwischen diesen Ionen ist (Coulomb‘sches Gesetz): Um diesen Abstand um die Strecke -dr zu vermindern, müssen wir die folgende Arbeit aufwenden:  = dielektrische Leitfähigkeit oder Dielektrizitätskonstante

20 Um zwei Ionen aus unendlicher Entfernung auf ihren Stoßdurchmesser d AB zu bringen, muss folgender Betrag an (elektrostatischer) Arbeit aufgebracht werden: w zählt mit zum Arbeitsaufwand bei der Bildung des Aktivierten Komplexes! positiv, wenn z A und z B gleiches Vorzeichen haben: Aktivierungsenergie erhöht negativ, wenn z A und z B ungleiches Vorzeichen haben: Aktivierungsenergie verringert

21 nicht-elektrostatisch elektrostatisch

22 ln k sollte demnach eine lineare Funktion von 1/ε sein, wenn die Geschwindigkeit einer bestimmten Reaktion in einer Reihe von LM mit unterschiedlichem ε bestimmt wird. Experimentelle Befunde stimmen gut damit überein. Erst bei kleinen Werten von ε tritt Abweichung von der Geraden auf (durch Ionenassoziation).

23 Einfluss gelöster Salze Beispiel: Bimolekulare Reaktion Die beiden Ionen und reagieren miteinander Die Reaktion verläuft über den aktivierten Komplex z.B. Fe 3+ + I - (FeI) 2+ Fe 2+ + ½ I 2

24 Da Ionen vorliegen, muss die Quasi Gleichgewichtskonstante durch Aktivitäten ausgedrückt werden: In die Reaktionsgeschwindigkeit geht jedoch die Konzentration des aktivierten Komplexes ein, nicht seine Aktivität!

25

26 Nach der Debye-Hückel-Theorie gilt für wässrige Lösungen bei 298 K (Debye-Hückelsches Grenzgesetz für verdünnte Lösungen) Die Summierung erstreckt sich über alle Ionenarten in der Lösung, nicht nur über die reagierenden Ionen!

27 Brønsted‘sche Gleichung

28 Trägt man für eine wässrige Lösung bei 298 K gegen Die Quadratwurzel der Ionenstärke auf, so erhält man eine Gerade, deren Steigung nahezu gleich dem Produkt der Ionenladungen der reagierenden Ionen ist.

29 Änderung der Reaktionsgeschwindigkeitskonstante mit der Ionenstärke = primärer kinetischer Salzeffekt Wenn z A und z B dasselbe Vorzeichen haben, dann ist die Steigung der Geraden positiv, die Reaktionsgeschwindigkeit nimmt mit steigender Ionenstärke zu Wenn z A und z B unterschiedliches Vorzeichen haben, dann ist die Steigung der Geraden negativ, die Reaktionsgeschwindigkeit nimmt mit steigender Ionenstärke ab Ist einer der Reaktionsteilnehmer ungeladen, dann ist die Reaktionsgeschwindigkeit unabhängig von der Ionenstärke

30 IA 2 [Co(NH 3 ) 5 Br] 2+ + Hg H 2 O = 2 [Co(NH 3 ) 5 (H 2 O)] 3+ + HgBr 2 IB S 2 O I - = 2 SO I 2 II A [Co(NH 3 ) 5 Br] 2+ + OH - = [Co(NH 3 ) 5 (OH)] 2+ + Br - IIB H 2 O 2 + H + + Br - = 2 H 2 O + Br 2 III [Cr(NH 2 CONH 2 ) 6 ] H 2 O = [Cr(H 2 O) 6 ] NH 2 CONH 2 Quelle: Samuel Glasstone


Herunterladen ppt "Nitromethan: polar Tetrachlormethan: unpolar."

Ähnliche Präsentationen


Google-Anzeigen