Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Proseminar: Mensch-Maschine-Interaktion Julia Withauer.

Ähnliche Präsentationen


Präsentation zum Thema: "Proseminar: Mensch-Maschine-Interaktion Julia Withauer."—  Präsentation transkript:

1 Proseminar: Mensch-Maschine-Interaktion Julia Withauer

2 Repräsentation & Wissen represented world - representing world Haus Bauplan Palmer (Psychologe)Winston (Informatiker) 1.Was ist die represented world? 2.Was ist die representing world? 3.Welche Aspekte der represented world werden gestaltet? 4.Welche Aspekte der representing world verrichten die Gestaltung? 5.Was sind die Übereinstimmungen/ Verbindungen der beiden Welten? 6.Was ist das Ziel/der Zweck der Gestaltung? 1.lexikalischer Teil setzt fest, welche Symbole im Vokabular der Repräsentation erlaubt sind. 2.struktureller Teil beschreibt Einschränkungen über die Anordnung der Symbole. 3.prozeduraler Teil spezifiziert Zugriffsvor- gänge, die es ermöglichen, Beschreibungen zu verfassen und zu verändern. Fragen werden beantwortet, indem man die Beschreibung nutzt. 4.semantischer Teil setzt einen Weg fest, der es zulässt, Bedeutung mit den Beschrei- bungen zu assoziieren. Haus Bauplan Höhe Maßzahl über die Höhe Maß- stab bewohnbar Türen, Fenster Fenster nur an Aussenwände 3-D-Animation: Gang durchs Haus Symbol für Holz z.B.

3 Arten der Wissensrepräsentation Procedural representations: Wissen wird durch Handlungen repräsentiert. Propositional representation: Wissen wird als Reihe von Aussagen, Begriffen, Gegenständen und Merkmalen und den Beziehungen untereinander dargestellt ( semantic networks). Analogical representations: Tatsachen werden als gedankliche Vorstellungen erklärt.

4 Propositional representations Semantische Merkmale und Eigenschaften

5 Experiment (1969 Collins & Quillian) Ein Kanarienvogel ist gelb. Ein Kanarienvogel hat Federn. Ein Kanarienvogel frisst Nahrung. Hierarchische Speicherung von Information Kanarienvogel Vogel Tier ist ein

6 Experiment (1974 Smith, Shoben & Rips) Rotkehlchen ist ein Vogel. Tür ist ein Vogel. Huhn ist ein Vogel. Fledermaus ist ein Vogel. Aufgabe: Über den Wahrheitswert der Sätze entscheiden. schnellere Entscheidung als Schlussfolgerung

7 Ablauf: 1.Merkmale werden verglichen: Übereinstimmung? Ja Nein Unentschieden - wenn untypisch - dann: 2.Genauerer Vergleich der definierenden und charakteristischen Merkmale

8 Einschränkungen und Probleme dieser Modelle: 1. Repräsentieren einfacher Fakten oder Ereignisse 2. Repräsentation behandelt nicht, dass z.B. aus Eine Katze ist ein Tier und Ein Hund ist ein Tier nicht Eine Katze ist ein Hund folgt 3. Repräsentation behandelt nicht, wie bei Mengenbestimmungen unterschieden wird: Jeder kennt jemanden. Jemand wird von jedem gekannt.

9 Semantic Networks Zweck: Repräsentation bestehender Assoziationen von Begriffen zu anderen Bedeutung/Beschreibung der Begriffe (Bildung von Kategorien, Hierarchien Unterschied zu propositional network) jagte stahl Boxer FleischSiamese kaute Hund ist ein mag

10 Inheritance properties (Vererbungseigenschaften) Eigenschaften und Merkmale werden an Unterkategorie weitergegeben Unterkategorie besitzt zusätzlich speziellere Eigenschaften Vererbung nicht streng hierarchisch (Ausnahmen)

11 Schemas, Frames and Scripts Damit nicht nur Begriffsbedeutungen und Zusammenhänge repräsentiert werden können, sondern auch z.B. Ereignisse, wurden folgende Theorien entwickelt: Schemas (Rumelhart) Frames (Minsky) Plans (Abelson) Scripts and Episodes (Schank) zusammengefasst zur Script-Theorie

12 Schemas

13 Stufen der Abstraktion Abstraktionseinheiten ermöglichen Zusammenfassungen und Erkennung von Ähnlichkeiten. Wissen Semantische Komponente: Kenntnis über Wortbedeutungen und Zusammenhänge Episodische Komponente: Wissen durch Erfahrungen Aktiver Arbeitsprozess

14 Frames Variablen high-level und low-level Frame-Struktur kein aktiver Arbeitsvorgang Information über gewöhnliche Situationen wird dargestellt, die Alltagswissen beinhaltet. frame-based representation (Keane und Johnson): Wissen besteht aus · Zielen (goals) · Plänen (plans) · Verläufen (procedures, macro-actions) · Handlungen ((micro-)actions) · Objekten (objects)

15 Ereignis (Ort, Tag, Zeit) Unglücksereignis (Schaden, obdachlos, verletzt, getötet) Erdbeben (Verwerfung, Stärke) Hochwasser (Wasserstand, Fluss) Wirbelsturm (Windgeschwindigkeit, Name) Sportereignis (Sportart, Gewinner, Punktestand) Gesellschaftsereignis (Gastgeber, Anzahl der Gäste) Geburtstagsfeier (Alter, Geburtstagskind) Hochzeit (Braut, Bräutigam, Kleid der Braut)

16 Scripts Schema, das häufig auftretende Folgen von Ereignissen darstellt. Scripts bestehen aus folgenden Elementen: · Rollen (roles) und Requisiten (props) · Anfangsbedingungen (entry conditions) · Szenen (scenes) und Ergebnisse (results) Bsp.: Arztbesuch Anfangsbedingungen: krank, versichert, Praxis offen Rollen: Patient, Arzthelfer, Arzt Requisiten: Versichertenkarte, Stühle, Stethoskop usw. Szenen: Vorstellen, Warten, Untersuchung, Gehen Ergebnis: Rezept bekommen

17 Plans Erreichung von Zielen (sub-)goals Bsp.: John wusste, dass die Operation seiner Frau sehr teuer sein würde. Er dachte an den Onkel. Er holte das Telefonbuch. Problem Kosten der OP Primary goal Bezahlen der OP Plan Geldleihen vom Onkel Subgoal Kontaktaufnahme zum Onkel Plan Anruf beim Onkel Subgoal Herausfinden der Telefonnummer des Onkels Plan Nachschauen im Telefonbuch

18 Analogical representations Repräsentation gedanklicher Vorstellungen Visuelle Vorstellung: In HCI: Icons konkret - abstrakt Ergebnisse von Studien: Rogers, 1986: konkrete Icons mit Beschriftungen sind am effektivsten. Bell, 1989: Icons ohne Beschriftung sind nicht effektiver als Beschriftungen ohne Icon. Für abstrakte Konzepte sind Beschriftungen ohne Icon sogar effektiver als als Icons ohne Beschriftung. Effektivität des gestalteten Icons ist abhängig von: 1.Vorstellungspotential des Konzepts 2.Individuelle Fähigkeit des Menschen, Vorstellungen visuell umzusetzen. high vivid imager – low vivid imager

19 Procedural representations Wissen darüber, WIE etwas zu tun ist. Erwerb des Wissens durch Ausführung der Handlung Ablauf der Handlung sicherer durch Wiederholen der Durchführung Lernen Aktivierung der Verläufe: · durch direktes Aufrufen · durch Erfüllung von Bedingungen Wenn-Dann-Beziehung; production rules werden zu production systems hinzugefügt/ersetzt Erlangen von Fähigkeiten Gefahr der Automatisierung z.B. Fahrradfahren, Rechnen

20 Menschliches Wissen kann nicht in verschiedene Formen der Wissensrepräsentation eingeteilt werden, die einander ausschließen. Bsp.: Wissen über eine Computeranwendung Wissen darüber, für was sie benutzt werden kann Wissen darüber, wie die einzelnen Menüs und Fenster aussehen Wissen darüber, wie man die Maus handhaben muss Zusammenfassend:


Herunterladen ppt "Proseminar: Mensch-Maschine-Interaktion Julia Withauer."

Ähnliche Präsentationen


Google-Anzeigen