Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Statistiktutorat Sitzung 3: Grafische Darstellungen und Wahrscheinlichkeitsrechnung

Ähnliche Präsentationen


Präsentation zum Thema: "Statistiktutorat Sitzung 3: Grafische Darstellungen und Wahrscheinlichkeitsrechnung"—  Präsentation transkript:

1 Statistiktutorat Sitzung 3: Grafische Darstellungen und Wahrscheinlichkeitsrechnung

2 Aufgabenblatt III, Aufgabe 1 m = · log (N)

3 Aufgabenblatt III, Aufgabe 2 Zusammenhang 2er stetiger (kontinuierlicher) Variablen Scatterplot Häufigkeit; 1 diskrete Variable Kreisdiagramm Welche grafischen Darstellungsformen sind besonders geeignet? Entscheiden Sie sich immer für eine Diagrammform!

4 Aufgabenblatt III, Aufgabe 2 Häufigkeit; 1 diskrete Variable Balkendiagramm Verteilung; 1 stetige (kontinuierliche) Variable Histogramm, Boxplot oder Stem-and-Leaf-Plot

5 Aufgabenblatt III, Aufgabe 3 Stelle die folgenden Gewichtsangaben in kg als Stem-and-Leaf-Plot dar. 65, 54, 53, 55, 48, 80, 77, 63, 63, 58, 60, 66, 54, 52, 68, 59, 63, 68, 70, 58, 53, 62

6 Aufgabenblatt III, Aufgabe 4 Skizziere schematisch einen Box-Plot dar und beschrifte die relevanten Elemente.

7 Aufgabenblatt III, Aufgabe 5 Welchen Vorteil hat die grafische Darstellung einer Verteilung mittels eines Boxplots gegenüber dem Balkendiagramm? Aussagen über den Kernbereich der Vereilung möglich (Box). Extrem- & Ausreißerwerte ersichtlich (Kreise, Sterne). Aussagen über Variabilität der Werte möglich (Whiskers).

8 Grafische Darstellungen

9 Graphische Darstell- ungen Exakte Werte Stem-and Leaf-Plot Zusammen -hang Stetig/ stetig Scatter -Plot Verteil- ungen Stetig/ diskret Box plot Histo -gramm Relativer Anteil Kreis diagramm Häufig- keiten/ Prozente stetig Polygon diskret Balken diagramm Mittel -werte Balken- diagramm

10 Boxplot Boxplots stellen viele Verteilungsinformationen gleich- zeitig dar: Man sieht den Median, den Interquartilabstand, den Range und so genannte Ausreißer- und Extremwerte. In der Praxis dienen Boxplots primär der Kontrolle von besagten Ausreißer- und Extremwerten. Als Ausreißer gelten Werte die mehr als das 1.5fache des des Interquartilabstandes unter Q1 oder über Q3 liegen. Als Extremwerte gelten Werte, die mehr als das 3fache des Interquartilabstandes unter Q1 oder über Q3 liegen. Beispiel: Q1 = 30; Q3 = 38; IQA = 8 Ausreißer:x 50 Extremwerte:x 62

11 Boxplot Max = 90 Q3 = 60 Md = 43.5 Q1 = 30 Min = 5 IQA = 30 Range = 85 Beispiel I:

12 Boxplot Beispiel II: Q3 = Q1 = 20 IQA = 5.25 Grenze für Ausreißer: · Grenze für Extremwerte: ·5.25 = 41

13 Welche grafische Darstellung ist hier gewählt? Balkendiagramm (Häufigkeit in %)

14 Welche grafische Darstellung ist hier gewählt? Balkendiagramm (Mittelwerte)

15 Welche grafische Darstellung ist hier gewählt? Histogramm Was unterscheidet ein Histogramm von Balkendiagrammen oder Polygonen? geeignet für kontinuierliche Variablen

16 Welche grafische Darstellung ist hier gewählt? Scatterplot Was stellt ein Scatterplot dar? Zusammenhänge zwischen Variablen

17 Was fehlt… Welche Möglichkeiten der grafischen Darstellung außer Balkendiagrammen, Histogrammen und Scatterplots kennt ihr und was wird jeweils dargestellt? Stem-and-Leaf-Plot; exakte Werte. Kreisdiagramm; (relative) Häufigkeit. Polygon; (absolute) Häufigkeit. Boxplot; Verteilungskennwerte.

18 Nennen Sie drei Unterschiede zwischen einem Polygon und einem Histogramm. Ein Polygon überspringt leere Kategorien. Ein Polygon eignet sich für diskrete Variablen, ein Histogramm für kontinuierliche. Beim Histogramm werden automatisch Kategorien gebildet. Arbeitsblatt 3, Aufgabe 1

19 Arbeitsblatt 3, Aufgabe 2 Nennen Sie einen wichtigen Unterschied bei der Darstellung einer Verteilung als Histogramm und als Balkendiagramm. Für welchen Variablentyp sind die Darstellungen jeweils besonders geeignet? Beim Histogramm werden Kategorien gebildet; beim Balkendiagramm nicht. Daher ist das Histogramm gut für kontinuierliche Variablen und das Balkendiagramm für diskrete Variablen geeignet.

20 Arbeitsblatt 3, Aufgabe 3 Stellen Sie folgende Verteilung als Häufigkeitstabelle dar (Schätzung): WertHäufigkeit Gesamt78

21 Arbeitsblatt 3, Aufgabe 4 Bilden Sie ein stem-and-leaf-plot für folgende Verteilung von Werten der Körpergröße:

22 Arbeitsblatt 3, Aufgabe 5 Der Boxplot stellt die Verteilungen der Reaktionszeiten einer Versuchsperson in einer Computeraufgabe in Millisekunden dar. Geben Sie bitte folgende Werte so genau wie möglich an: (a) 1. Quartil (Q1) (b) Median (Q2) (c) 3. Quartil (Q3) (d) Interquartilabstand (e) Range (für den um Ausreißer und Extremwerte bereinigten Datensatz). Berechnen Sie auch die Grenzen für (f) Ausreißerzeiten und (g) Extremwerte.

23 Arbeitsblatt 3, Aufgabe 5 Lösungen:

24 Wahrscheinlichkeitsrechnung

25 Wozu, weshalb, warum? Wir erinnern uns: Der große Rahmen…

26 Der Ereignisraum Die WS für Ereignisse liegt zwischen 0 (unmöglich) und 1 (sicher).

27 A priori oder Laplace Wahrscheinlichkeit (WS) Wenn vor Durchführung eines Zufallsexperiments: - Alle möglichen Ereignisse bekannt sind - und jedes Ereignis mit der gleichen WS auftritt dann kann die WS für das Auftreten eines Ereignisses (A) im Vorhinein (a priori) mittels der Formel von Laplace geschätzt werden. Relativer Anteil der günstigen Fälle an allen möglichen Ereignissen.

28 Beispiel: Laplace-WS Wie groß ist die WS, aus einem Kartenspiel mit 32 Karten mit einem Versuch folgende Karte(n) zu ziehen: oEin Herzass 1/32 oEinen König 4/32 = 1/8 oEine schwarze Karte 16/32 = 1/2

29 Laplace-WS grafisch

30 A posteriori oder Bernoulli-WS In er psychologischen Forschungspraxis ist a priori zumeist weder die Anzahl der möglichen Fälle bekannt, noch hat jeder Fall die gleiche Auftretens- wahrscheinlichkeit ( viele psychologisch relevante Variablen sind normalverteilt). Daher schätzt man die Häufigkeit des Auftretens von (A) im Nachhinein (a posteriori) nach sehr vielen Durchgängen eines Zufallsexperiments mittels der Formel von Bernoulli. Grenzwert der relativen Häufigkeit des Eintretens der günstigen Fälle bei sehr häufigem Durchführen eines Zufallsexperimentes.

31 Beispiel: Bernoulli-WS Geben Sie die Wahrscheinlichkeit dafür an, dass ein/e zufällig angesprochene/r Freiburger Psychologiestudent/in weiblich ist. sexHäufigkeitp w58 m20 Gesamt

32 Bernoulli-WS grafisch nicht A, bzw. das Komplementärereignis zu A

33 Je größer N wird, desto genauer wird unsere Schätzung. Dies bezeichnet man als Gesetz der großen Zahl. Vpsexπ(w)

34 Additionstheorem oMit dem Additionstheorem wird die Wahrscheinlichkeit berechnet, dass entweder Ereignis A oder Ereignis B eintritt. oBei disjunkten Ereignissen, die niemals gleichzeitig auftreten, werden die Einzelwahrscheinlichkeiten von A und B einfach addiert: oBei nicht-disjunkten Ereignissen, wird die WS für A B von A + B abgezogen:

35 Additionstheorem grafisch Nicht-disjunktes Ereignis Disjunktes Ereignis

36 Multiplikationstheorem oMit dem Multiplikationstheorem wird die Wahrscheinlichkeit berechnet, dass die Ereignisse A und B gleichzeitig eintreten. oBei unabhängigen Ereignissen werden die Einzelwahrscheinlichkeiten einfach multipliziert: oBei abhängigen Ereignissen wird folgende Formel verwendet: Bedingte Wahrscheinlichkeit

37 Multiplikationstheorem grafisch

38 Stochastische Unabhängigkeit Um zu wissen, welche Formel des Multiplikationstheorems ich anwenden soll, muss ich die Ereignisse A und B auf Abhängigkeit bzw. Unabhängigkeit prüfen. Zwei Ereignisse sind stochastisch unabhängig, wenn die Wahrscheinlichkeit für Ereignis A nicht vom Eintreten von Ereignis B beeinflusst wird. Mathematisch ist stochastische Unabhängigkeit folgendermaßen definiert:

39 Disjunkt- und Unabhängigkeit Disjunkte Ereignisse sind grundsätzlich unabhängig. Der Umkehrschluss gilt jedoch nicht: Ereignisse können mit einer WS>0 gemeinsam auftreten und dennoch statistisch voneinander unabhängig sein.

40 Bedingte Wahrscheinlichkeit Die bedingte Wahrscheinlichkeit gibt an, wie wahrscheinlich ein Ereignis ist, wenn ein anderes, (statistisch abhängiges) Ereignis schon eingetreten ist. Man schreibt: Wahrscheinlichkeit, dass A und B gleichzeitig eintreten. Wahrscheinlichkeit von A unter der Bedingung B Wahrscheinlichkeit, dass B eintritt.

41 Bedingte Wahrscheinlichkeit oWir stellen uns also die Frage, ob B die Wahrscheinlichkeit für das Auftreten von A verändert oder nicht. oTreten A und B überzufällig häufig gemeinsam auf, liegt eine bedingte WS vor. oDie bedingte WS ergibt sich aus dem Multiplikationstheorem für abhängige Ereignisse:

42 Hier liegt keine bedingte WS vor: Die Häufigkeit von A ist nicht abhängig vom Aufreten von B. Hier liegt eine bedingte WS vor: Die Häufigkeit von A ist abhängig vom Aufreten von B. ABA ABA

43 Beispiel: Stochastische Unabhängigkeit oDie WS zwangskrank und Mann zu sein liegt bei 0.6%. oDie WS zwangskrank und Frau zu sein liegt bei 0.4%. oUnsere Population ist chinesisch; sie besteht zu 60% aus Männer und 40% aus Frauen. Belege mathematisch, dass die Ereignisse Geschlecht und Zwangserkrankung unabhängig sind.

44 Beispiel: Bedingte WS o10% der Bevölkerung in Deutschland sind arm (Ereignis A). o5% der Bevölkerung ist arm und leidet unter einer psychischen Störung (Ereignis B). Wie groß ist die WS für einen Armen (Bedingung) unter einer psychischen Störung (Ereignis) zu leiden?

45 Vorsicht! Die WS für A unter der Bedingung B ist ungleich der WS für B unter der Bedingung A: Im Beispiel haben wir errechnet, dass 50% der Armen (Bedingung) unter einer psychischen Störung (Ereignis) leidet: Die Frage, welcher relative Anteil der psychisch gestörten (Bedingung) arm (Ereignis) ist, haben wir damit nicht beantwortet. Können wir die Frage überhaupt klären? Nein, da uns die WS für p (B) fehlt:

46 Das Theorem von Bayes erlaubt es, die bedingten Wahrscheinlichkeiten p(A|B) und p(B|A) in Beziehung zu setzen: Das Theorem von Bayes bzw. Das Theorem von Bayes erlaubt uns also, aus einer bekannten bedingten WS, die WS für die Gegenbedingung zu berechnen.

47 Herleitung Das Theorem von Bayes wird aus der bedingten Wahrscheinlichkeit hergeleitet: Nach Umstellung

48 Beispiel: Theorem von Bayes o12% der Bevölkerung ist psychisch gestört; p(A). o10% der Bevölkerung ist arm; p(B). o50% der Armen ist psychisch gestört; p(A|B). oWelcher Anteil der psychisch gestörten ist arm; p(B|A)?

49 WertHäufigkeit Gesamt78 Geben Sie an, wie wahrscheinlich es ist, dass ein Wert von (a) genau 5, (b) größer als 3, und (c) von 2 bis 4 vorkommt. Gegeben sei eine Häufigkeitsverteilung: Arbeitsblatt 4, Aufgabe 2

50 Arbeitsblatt 4, Aufgabe 3 Definieren Sie stochastische Unabhängigkeit. Geben Sie auch die mathematische Formel an. Zwei Ereignisse sind stochastisch unabhängig, wenn die Wahrscheinlichkeit für Ereignis A nicht vom Eintreten von Ereignis B beeinflusst wird: p(A) = p(A | B)

51 Arbeitsblatt 4, Aufgabe 4 (Theorem von Bayes) In einer Schule werden Kinder mit einer Wahrscheinlichkeit von p = 0.05 als besonders begabt klassifiziert. Diese Gruppe setzt sich aus 60% Mädchen und 40% Jungen zusammen. Insgesamt besteht die Schülerschaft zu 45% aus Mädchen. Wie wahrscheinlich ist es für ein Mädchen, als besonders begabt klassifiziert zu werden?

52 oNach welcher bedingten WS ist hier gefragt? Wenn ich ein Mädchen bin, wie groß ist die WS begabt zu sein? Mit anderen Worten: Die WS für das Ereignis begabt zu sein unter der Bedingung weiblich. oWelche bedingte WS ist hier bereits gegeben? Wenn ich ein Begabter bin, wie groß ist die WS ein Mädchen zu sein? Mit anderen Worten: Die WS für das Ereignis weiblich unter der Bedingung begabt. oWas brauchen wir noch? Die Grundwahrscheinlichkeit für Ereignis 1 (begabt). Die Grundwahrscheinlichkeit für Ereignis 2 (weiblich).

53 Lösungsweg Die WS für Ereignis A (begabt zu sein) ist 0.05 Die WS für Ereignis B (ein Mädchen zu sein) ist in unserer Population 0.45 Die WS für einen Begabten weiblich zu sein beträgt 0.6

54 Theorem von Bayes: Weitere Beispiele I oDie WS für ein Kind eine Gymnasialempfehlung zu erhalten beträgt für einen deutschen Grundschüler 40%. o90% aller Gymnasiasten kommen aus Familien mit überdurchschnittlich hohem sozioökonomischen Status. Mit anderen Worten: Wenn ich auf dem Gymnasium bin, ist mein Elternhaus mit 90% WS besser gestellt. oDer Anteil der Familien mit überdurchschnittlichem sozioökonomischen Status an der Gesamtbevölkerung beträgt 50% (Operationalisierung: Median-Split). Aufgabe 1: Wenn ich ein Kind aus einem relativ reichen Elternhaus bin (obere 50%), wie groß ist die WS später auf ein Gymnasium zu gehen? Aufgabe 2: Wenn ich ein Kind aus einem relativ armen Elternhaus bin (untere 50%), wie groß ist dann die WS in Zukunft aufs Gymnasium zu gehen?

55 Lösungsweg 1 Die WS. für Ereignis A (reich) ist 0.5 Die WS. für Ereignis B (Gymnasium) ist 0.4 Die WS für einen Gymnasiasten (Bedingung) reich zu sein (Ereignis) ist 0.9 Gesucht ist nun die WS für einen Reichen (Bedingung), ein Gymnasiast zu sein (Ereignis).

56 Lösungsweg 2 Die WS. für Ereignis A (arm) 0.5 Die WS. für Ereignis B (Gymnasium) ist 0.4 Die WS für einen Gymnasiasten reich zu sein ist 0.9 Demnach beträgt die inverse WS, nämlich die WS für einen Gymnasiasten arm zu sein, 0.1 Gesucht ist hier also die WS für einen Armen (Bedingung), ein Gymnasiast zu sein (Ereignis).

57 Theorem von Bayes: Weitere Beispiele II oIn einem Test für eine Krankheit erhalten 99% aller Kranken und 1% aller Gesunden ein positives Testergebnis: p(positives Ergebnis|krank) =.99 oGrundwahrscheinlichkeit (Basisrate) der Krankheit in der Bevölkerung ist: p(Krank) =.001 oGrundwahrscheinlichkeit für ein positives Ergebnis ist: p(positives Ergebnis) =.01 Wie groß ist die WS für einen positiv getesteten, tatsächlich krank zu sein?

58 Es zeigt sich, dass Gewaltopfer zu 80% Frauen sind: p(w | gewaltopfer) =.80 Die Grundwahrscheinlichkeit Opfer von Gewalt zu werden in der Bevölkerung sei: p(Gew.) =.03 Wie hoch ist das Risiko für einen Frau, Opfer von Gewalt zu werden? Theorem von Bayes: Weitere Beispiele III

59 Vielen Dank für eure Aufmerksamkeit!


Herunterladen ppt "Statistiktutorat Sitzung 3: Grafische Darstellungen und Wahrscheinlichkeitsrechnung"

Ähnliche Präsentationen


Google-Anzeigen