Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

ANTIALIASING Ein Seminar in Computer Grafik von Johannes Bochmann.

Ähnliche Präsentationen


Präsentation zum Thema: "ANTIALIASING Ein Seminar in Computer Grafik von Johannes Bochmann."—  Präsentation transkript:

1 ANTIALIASING Ein Seminar in Computer Grafik von Johannes Bochmann

2 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

3 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

4 Jaggies Durch die Rasterisierung der Bildschirmaufloesung werden hoch kontrastige Kanten gesteppt dargestellt

5 Gegenmassnahmen Hoehere Aufloesung Kostet viel Rechenkraft Proben von hochaufgeloesten Bild nehmen Aufsummieren der Farbanteile (evtl. mit Gewichten)

6 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

7 Aliasing im klassischem Sinn

8 Sample-Rate Aliasing im klassischen sinne: Die sample-rate ist zu grob um die gewuenschte Welle richtig darzustellen (Undersampling)

9 Sample-Rate Die Sample-Rate wird durch die Aufloesung des Bildschirms bestimmt Damit kein aliasing auftritt sollte die Sample-Rate midestens so klein wie das Nyquist limit sein: frequenz/2 In Computer-Grafik kann das Frequenz-Spektrum allerdings theoretisch unendlich klein werden

10 Sample-Rate

11 Saple-Rate Zwei Probleme: Die Frequenz der Welle kann sich durch zu grobes sampling veraendern Ausserdem kann es passieren, dass Information zwischen den Sample- Intervallen verloren geht

12 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

13 Filtern Wir haben ein mathematisch beschriebenes Bild zu sampeln (quasi kontinuierlich) Das heisst das Bild an den Pixel- Koordinaten zu berechnen (Abstand der Pixel = Sample-Rate) Man sieht aliasing kann auftreten wenn die Information zu detailliert wird

14 Filtern

15 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

16 Pre-Filtering Wir berechnen den Anteil von jedem Fragment der Geometrie welches von einem Pixel ueberdeckt wird. Dann berechnen wir die Farbe des Pixels durch summierung der der Farben der sichtbaren Flaechen (je groesser die Flaeche, desto mehr anteil hat sie)

17 Pre-Filtering Reduktion der unendlichen Aufloesung auf die der Pixel Man geht davon aus, dass die Licht- Itensitaet ueber einer Flaeche konstant bleibt Effektiv eleminieren wir Detail aus der unendlichen Darstellung (benutzen eines low-pass box filter)

18 Pre-Filtering Effektiv filtern vor dem sampeln -> Pre-Filtering

19 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

20 Post-filtering Man nimmt aus dem Bereich der Flaeche jedes Pixels mehrere Proben aus dem hochaufgeloesten Bild und summiert sie (evtl. mit Gewichten) auf.

21 Post-Filtering (Uniform) Man legt ein Filter auf ein super-Pixel Ein super-Pixel ist eine anzahl von Bereichen aus dem hochaufgeloestem Bild, welche einem Pixel entsprechen Der Filter kann z.B. so aussehen:

22 Post-Filtering (Uniform) Diese Methode ist allerdings teuer. Um ein 2048*2048 Bild auf ein 512*512 Bild mit einem 7*7 Filter zu reduzieren braucht man 512*512*49 Multiplikationen und Additionen Da beim Filtern mehrere Bildpunkte in der Umgebung zu einer Farbe aufsummiert werden, wirkt das Bild verschwommen

23 Post-Filtering (Uniform) Ein weiter Filter verstaerkt Bluring Ein enger Filter hingegen bekaempft nicht so stark das aliasing Ausserdem verlieren sehr kleine Objekte im Bild ihre Details Ein weiterer Nachteil ist, das Bereiche mit wenig Geometrie mit der gleichen Genauigkeit berechnet werden

24 Post-Filtering (non-Uniform) Die Teile des Bildes beachten, welche am meisten Aufmerksamkeit benoetigen man kann diese Teile herausfinden durch adaptive Refinement Man generiert ein grobes Bild und verbessert dieses Stellen, welche am meisten Detail beinhalten, bis zu einer bestimmten Grenze

25 Post-Filtering (non-Uniform) Wenn die Frequenz zu fein wird um sie ohne aliases zu sampeln, zufalls- sampel einbauen Dadurch wird aliasing vermieden und noise produziert Durch noise wird die regelmaessigkeit des aliasings unterbrochen und so weniger auffaellig

26 Sampling and Anti-aliasing Wenn man es nicht loswird, zu noise konvertieren Aliased SchachbrettSchachbrett mit noise

27 Uebersicht: Aliasing Jaggies Aliasing im klassischem Sinn Filtern Pre-Filtering Post-Filtering Fourier Transformation

28 Jean Baptiste Fourier zeigte, dass jede periodische Wellenform als eine Summe von unendlich vielen sinus- Wellen dargestellt werden kann Fourier Transformation transformiert Bilder vom Ortsbereich in den Frequenzbereich und vice-versa

29 Fourier Transformation Warum? Der Frequenz-Bereich ist ein sehr guter Platz um unsere Signale zu analysieren und zu verstehen Intuitiv kann man sagen, desto schaerfer eine ecke im Raum-Bereich, desto hoeher die Frequenz

30 Fourier-Transformation Man transfomriert das Bild in den Frequenz-Bereich Veraendert die Frequenzen (z.B. mit Filtern) Re-transformiert das Bild in den Orts- Bereich

31 Fourier-Transformation …


Herunterladen ppt "ANTIALIASING Ein Seminar in Computer Grafik von Johannes Bochmann."

Ähnliche Präsentationen


Google-Anzeigen