Präsentation herunterladen
1
Bruchrechnung
2
Bruchrechnung in der Schule
Nach Thüringer Lehrplan für Mathematik In Klasse 6 drei Themenabschnitte: Teilbarkeit, natürliche Zahlen: 5 Wochen Rechnen mit gebrochenen Zahlen: 14 Wochen Symmetrien und Abbildungen: 9 Wochen
3
Vier Konzepte zur Behandlung
Größenkonzept Äquivalenzklassenkonzept Gleichungskonzept Operatorenkonzept
4
Größenkonzept ausgehend von konkreten Brüchen (e… Einheit)
gelangt durch Abstraktion zu fester Bezugsgröße „Das Ganze“
5
Größenkonzept Vorteile Nachteile - Nähe zur Anwendung Motivation
Rückgriff auf Vorkenntnisse geeignet für Erweitern, Kürzen, Anordnung, Addition, Subtraktion - Grenzen bei der Multiplikation und Division Methodenreinheit
6
Operatorkonzept Bruchzahl als Operator bzw. Funktion
ausgehend vom alltäglichen Sprechen „3/4 von 4 kg“ Anschaulichkeit: Operatoren als „Maschinen“ Einstieg mit Multiplikation und Division
7
Operatorkonzept Vorteile Nachteile
- Einführung der Multiplikation und Division typische Fehler bei Addition keine anschauliche Vorstellung für Kürzen und Erweitern Herleitung der Anordnung der Bruchzahlen aufwändig
8
Äquivalenzklassenkonzept
Bruchzahl als Äquivalenzklasse von quotientengleichen Paaren von natürlichen Zahlen Rechenoperationen (Addition, Multiplikation, etc.) werden definiert
9
Äquivalenzklassenkonzept
Vorteile Nachteile - mathematisch einwandfreie Definition - keine Anwendungs-orientierung, zu formal - knüpft nicht an Vor-wissen der Schüler an
10
Gleichungskonzept Bruchzahl als Lösung einer linearen Gleichung
11
Gleichungskonzept Vorteile Nachteile
- einfache, mathematisch einwandfreie Einführung der Rechenoperationen - Lösbarkeit der Gleichung wird vorausgesetzt - erforderliche Vorkenntnisse über Gleichungssysteme nicht vorhanden - sehr formal - Probleme bei Einführung der Division
12
Anwendungsaspekte von Bruchzahlen
Maßzahlaspekt Relationsaspekt Operatoraspekt Skalenwertaspekt Quotientenaspekt
13
Zwei Grundvorstellungen
Bruch als Teil eines Ganzen Bruch als Teil mehrerer Ganzen
14
Bruch als Teil eines Ganzen
15
Bruch als Teil eines Ganzen
16
Gleichheit beider Vorstellungen
17
Unterschied zu natürlichen Zahlen
Möglichkeit der Zuordnung mehrerer Bruchzahlen zu einem Repräsentanten Bruchdomino
18
Addition von Bruchzahlen
Addition zweier gleichnamiger Brüche: Veranschaulichung über (z. B.) Flächen + =
19
weitere Variationen / Beispiele
(intuitives) Erkennen der Regel für Addition gleich- namiger Brüche: bzw. (ohne Größeneinheit e)
20
Addition zweier ungleichnamiger Brüche:
+
21
Addition zweier ungleichnamiger Brüche:
passende Unterteilung des Rechtecks in gleich große Teilflächen
22
Addition zweier ungleichnamiger Brüche:
gröbste gemeinsame Unterteilung wird rechnerisch durch das Finden des Hauptnenners (kgV der beiden Nenner) realisiert beide Brüche werden entsprechend erweitert und gemäß der Additionsregel für gleichnamige Brüche addiert allgemeine Regel: bzw.
23
Addition von Bruch und natürlicher Zahl:
Einbettung der natürlichen Zahlen in die Bruchzahlen: entsprechende Anwendung der Rechenregeln
24
Einführung gemischter Zahlen
Kurzschreibweise, z. B.: erleichtert Addition, z. B.: statt:
25
Typische Schülerfehler bei der Addition
Addition zweier ungleichnamiger Brüche: Ursachen: Übertragung der Multiplikationsregel fehlendes Verständnis Übertragung von Alltagssituationen
26
Typische Schülerfehler bei der Addition
Addition zweier ungleichnamiger Brüche: Fehler beim Erweitern der Brüche auf einen Hauptnenner z. B.:
27
Typische Schülerfehler bei der Addition
Addition von Bruch und natürlicher Zahl: falsche Einbettung der natürlichen Zahlen in die Bruchzahlen: bzw.
28
Gruppenarbeit Aufgabe:
Erarbeiten Sie einen schülergerechten Weg zur Erarbeitung bzw. Einführung der Rechenregel für die Division zweier Bruchzahlen!
29
„Wenn man die gemeinen Brüche eingeführt hat, muss man dann überhaupt noch die Dezimalbrüche einführen? Oder reicht es nur eines von beiden zu behandeln?“
30
Quellen Padberg, F. (1995): Didaktik der Bruchrechnung. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford Pietzsch, G. (1985): Zur Behandlung der gebrochenen Zahlen im Unterricht. Volk und Wissen, Berlin (Stand: ) (Stand: ) (Stand: )
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.