Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Vorlesung 7 Einschlagskrater: Modellierung. Skalierung und -Theorem. Numerische Modellierung mittels Hydrocode. Labormodellierung bei Hochdruck und Hochtemperatur.

Ähnliche Präsentationen


Präsentation zum Thema: "Vorlesung 7 Einschlagskrater: Modellierung. Skalierung und -Theorem. Numerische Modellierung mittels Hydrocode. Labormodellierung bei Hochdruck und Hochtemperatur."—  Präsentation transkript:

1 Vorlesung 7 Einschlagskrater: Modellierung. Skalierung und -Theorem. Numerische Modellierung mittels Hydrocode. Labormodellierung bei Hochdruck und Hochtemperatur.

2 Buckingham Pi Theorem Das ist eine Musterlösung zur Dimensionsanalyse. Wir zeigen mit Hilfe der Dimensionsanalyse, mit welchem funktionalen Zusammenhang der Druckverlust p eines homogenen Fluids im geraden glatten Rohr mit Durchmesser D und Länge L angegeben werden kann. L D p Relevanzliste der Parameter: Zielgrösse = p Druckverlust, stoffliche Parameter= Dichte, kinematische Viskosität; prozessbedingte Parameter =Q Volumendurchsatz, geometrische Parameter= L Rohrlänge, D Rohrdurchmesser. Es gilt p=f 1 (,Q,, L, D). Die Zahl der Grunddimensionen ist 3: Masse =Kg [M], Länge= Meter [L], Zeit= Sec [t] Das Buckingham-Theorem sagt, dass die relevanten dimensionalen Grundvariablen (n=6) in den dimensionslosen unabhängigen Pi-Gruppen n-m=3 reduziert werden können. p= F( 1, 2, 3 ).

3 Dimensionale Analyse Grunddimensionen M(Masse), L(Länge), t(Zeit). Zum Beschreiben der Dichte brauchen wir Masse durch Länge³: [ ]=[M/L 3 ], [ p]=[F/A]=[ma/A]=[ML/t 2 /L 2 ]=[M/(Lt 2 )] [ ]=[M/(Lt)/(kg/L³)], [V]=[L/t], [L]=[L], D=[L] Nun muss ein Satz von dimensional behafteten Parametern ausgewählt werden, die alle 3 Grunddimensionen enthalten (wiederkehrende Variablen). Weiter ist es sinnvoll, keine Parameter mit denselben Dimensionen zu verwenden, also z.B. L und D mit jeweils [L]. Wir wählen in diesem Fall Q, D,. In diesem Zusammenhang sei erwähnt, dass das pi-Theorem nur die Zahl der einzuführenden dimensionslosen Kenngrössen angibt. Es macht keine Aussage darüber, wie sie zu bilden sind. Die einzuführenden Variablen müssen im wesentlichen nur die Bedingung erfüllen, dass sie dimensionslos sind. Man hat meistens die Wahl zwischen einer Vielzahl von Möglichkeiten. Man lässt sich dabei leiten durch Überlagerung der Zweckmässigkeit, denn die Form der Kennzahlen muss dem Vorgang angepasst sein und sich zum Auswerten und Darstellen der Versuchsergebnisse gut eignen. Weiter ist es z.B. zweckmässig, die Potenzen in der Definitionsgleichung möglichst klein zu wählen. Wenn eine der Variablen von besonderem Interesse ist, (z.B. die Geschwindigkeit des Stofftransportes V), richtet man es so ein, dass diese Hauptvariable in einer der dimensionslosen Kenngrössen mit der Potenz 1, in einer anderen Kenngrösse mit der Potenz 0 auftritt. Es muss dabei aber erfüllt sein, dass diejenigen Grundvariablen, die in allen 3 dimensionslosen Zahlen auftreten (wiederkehrende Variablen) zusammen alle Grundeinheiten enthalten.

4 -Gruppen Da wir die Einflussparameter auf den Druckverlust ermitteln wollen, sollte daher p nur in einer Kennzahl vorkommen und um dem Umstand Rechnung zu tragen, dass bei hinlänglich langen Rohren (vernachlässigbare Einlaufeffekte) p L ist, wird dies auch für L der Fall sein. Für die erste Gruppe formuliert man daher: 1 = a V b D c p, wobei a, b und c Exponenten sind. Ermittlung der Exponenten a, b, c durch Dimensionsbilanz: M: a+1=0, L: -3a+3b+c=0, t: -b-2=0 Daraus resultiert: a=-1, b=-2, und c=-4. Die erste dimensionslose Gruppe ergibt daher: In analoger Weise können die beiden anderen Kennzahlen ermitteln werden. Es ergibt sich für und für.

5 Gruppe Damit wird dem Umstand Rechnung zu tragen, dass bei hinlänglich langen Rohren(vernachlässigbare Einlaufeffekte) p L ist. Somit lässt sich folgende Beziehungen aufstellen: oder anders formuliert:

6 Druckverlust ist proportional zu 64/Re Druckverlust ist proportional zu Re -0.3 Druckverlust ist constant im turbulenten Bereich Re -1

7 Ziele der Meteoritenforschung: Wie gross war einer Durchmesser des Projektils L, das ein Krater mit bestimmten Durchmesser D und Tiefe H at an der Oberfläche der Erde verursacht? Wie gross war die Geschwindigkeit des Projektils V i ? Wie gross war der Winkel des Einschlags? Y ist die Schwelle-Spannung des Targetgesteins W ist die kinetische Energie - Porosität

8 Impakt-Explosion-Ähnlichkeit D/D 0 ~(E k /E k0 ) 1/3 Lampson-Gesetz ( für grosse Explosionen n~ 1/4) Skalierte Grabtiefe, d G /E k 1/3 Impakt: Kinetische Energie ~ 1/2 m p V i ², Grabtiefe ? d G ~ L·( p / t )1/2, wobei p und t sind Dichte des Projektils und Targetgesteins Nachteil dieser Methode: bei einer Explosion spielt mechanische Moment weniger Rolle als bei einem Impakt Skalierte Durchmesser D/E k 1/3

9 -scaling 1 =D·(M m ) a ( G ) b (V i ) c a+b=0; 1-3b+c=0; -c=0: b=1/3; a=-1/3 => 1 =D·( G /M m ) b 2. 2 = g·(M m ) a ( m ) b (V i ) c 1-3b+c=0; -2-c=0; a+b=0; c=-2; b=-1/3; a=1/3 => 2 = g·(M m / m ) 1/3 2 = > 1.61·g·L/ V i = Y·(M m ) a ( m ) b (V i ) c 1+a+b=0; -2-c=0; -1-3b+c=0: c=-2: b=-1; a=0 => 3 = Y·/( m ·V i ) =( m / G ) 1 = F( 2, 3, 4 )

10 Yield-Skalierung, Gaultsche Gesetz und Pi-Skalierung Gaultsche Gesetz: D at = · p 1/6 · t -1/2 ·W 0.37 ·(sin ) 2/3 für Krater D at <10 m, D at = 0.25· p 1/6 · t -1/2 ·W 0.29 ·(sin ) 1/3 für Krater 10

11 R G = g·L/Y <1 >1

12 Numerische Modelierung mittels Hydrocode

13 Ejekta-Ablagerungen von einem Meteorit-Einschlag Einschlag von einem Eisen- Meteorit: Durchmesser 1 Km, Einschlagsgeschwindigkeit 20 Km/Sek Targetgestein: Granit

14

15 1/R³

16 Labormodelierung der Explosionen und Impakten 1. Laser Irradiation (Stoss von einem Laserimpuls) 2. Schnelle elektrische Ausladung 3. Experimente mit Explosionsstoffen 4. Experimente mit der Entlastung von Druck

17 Laserimpuls-Methode

18 Simulierung einer Stosswelle von elektrischer Ausladung

19 Experimente mit Hochexplosiven Stoffen (TNT, OWC, Holtex) Kalzit 85 GPa

20 Schnelle Entlastung des Druckes in Multi-Anvilpresse


Herunterladen ppt "Vorlesung 7 Einschlagskrater: Modellierung. Skalierung und -Theorem. Numerische Modellierung mittels Hydrocode. Labormodellierung bei Hochdruck und Hochtemperatur."

Ähnliche Präsentationen


Google-Anzeigen