Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Im Gehirn haben viele Fähigkeiten ihren Ort

Ähnliche Präsentationen


Präsentation zum Thema: "Im Gehirn haben viele Fähigkeiten ihren Ort"—  Präsentation transkript:

1 Im Gehirn haben viele Fähigkeiten ihren Ort
Wo im Gehirn ist das Gedächtnis gespeichert? Verschiedene Arten von Gedächtnis Orte des Gedächtnis im Netzwerk der Neurone Die molekularen Bausteine des Gedächtnisses

2 Gene Erfahrung Entwicklung Drei Faktoren steuern das Verhalten

3 Selektives Lernen: Verstärker entweder Bestrafung oder Übelkeit
Stimuli: neuer (süßer) Geschmack, Ton Garcia Phänomen Entgegen der Annahmen von Pavlov und Skinner kann nicht alles gelernt werden.

4 Einteilung von Lernvorgängen
Nicht assoziatives Lernen Gewöhnung (Habituation) Sensitisierung Assoziatives Lernen Klassische Konditionierung Instrumentelle Konditionierung Relationales Lernen (Regeln lernen) Beobachtendes Lernen Navigationslernen Spielendes Lernen Einsichtiges Lernen Prägungsartiges Lernen Assoziatives Lernen wird als die basale Form des Lernens angesehen, Und liegt möglicherweise allen Formen des Lernens zu grunde.

5 Assoziatives Lernen: Klassische Konditionierung
Classical conditioning Assoziatives Lernen: Klassische Konditionierung CS: Hinweisreiz, US: Belohnung (Bestrafung): bewertender Reiz Während der Konditionierung Vor der Konditionierung US CS Nach der Konditonierung CS allein

6 Einteilung von Lernvorgängen
Nicht assoziatives Lernen Gewöhnung (Habituation) Sensitisierung Assoziatives Lernen Klassische Konditionierung Instrumentelle Konditionierung Relationales Lernen (Regeln lernen) Regel: wenn oben heller nach rechts laufen wenn unten heller dann links laufen Beobachtendes Lernen Navigationslernen Spielendes Lernen Einsichtiges Lernen (Planen) Prägungsartiges Lernen

7 Beobachtendes (exploratorisches) Lernen
Navigationslernen (erlernen einer räumlichen Karte) Futter speichernde Vögel: Episodisches Lernen: -wo - was - wann - für wen

8 Köhler: Planen und einsichtiges Lernen bei Schimpansen
Raben: Hochziehen eines Futterstückes an einer Schnur (Bernd Heinrich, Die Seele der Raben, Fischer Verlag, 1989 Köhler: Planen und einsichtiges Lernen bei Schimpansen

9 Einteilung des Gedächtnisses
nach der Zeit: Ikonisches (Sensorisches) Gedächtnis Kurzzeitgedächtnis (Mittelzeitgedächtnis) Langzeitgedächtnis Arbeitsgedächtnis Kurzzeitgedächtnis beim Menschen für sinnlose Silben Konsolidierung Arbeitsgedächtnis: die Ratte hatte gelernt, dass es Futter in allen Armen gibt, nun soll sie dieses so schnell wie möglich sammeln. Dazu muss sie erinnern wo sie bereits das Futter geholt hat.

10 Im Gehirn haben viele Fähigkeiten ihren Ort Gedächtnis (Wissen)
nach den beteiligten Gehirnstrukturen nach dem Inhalt: Implizites Wissen praktische Fähigkeiten, einfaches assoziatives und nicht assoziatives Lernen Priming Explizites Wissen Fakten, Ereignisse

11 Guy Pearce in „Memento“, der sein Gedächtnis verloren hat
andere Filme der letzten Zeit zum Thema Gedächtnis (Auslöschen von Gedächtnis ): 50 erste Dates (Adam Sandler) Vergiss mein nicht (Jim Carrey) Die Bourne Identität (Matt Damon) Eternal Sunshine of the Spotted Mind

12 Die Geschichte des Patienten HM und die Rolle des Hippokampus
Mammilar körper Amygdala Hippokampus Thalamus Gyrus cingularis Olfaktorischer Bulbus Die Geschichte des Patienten HM und die Rolle des Hippokampus Hippok. , Vorlesung menschl. Gehirn Gazzaniga, Ivry, Mangun: Cognitive Neuroscience, P. 59, Fig. 2.36

13 Motorisches Lernen des Patienten HM Normales motorisches Lernverhalten des Patienten HM Ort des motori- schen Lernens: Cerebellum

14 Im rechten Hippokampus des Menschen ist das räumliche Gedächtnis
gespeichert Die Aktivierung des rechten Hippokampus korreliert mit der Genauigkeit der Orientierung Londoner Taxifahrer haben einen größeren hinteren Hippokampus The Human Hippocampus and Spatial and Episodic Memory Neil Burgess,1'3 Eleanor A. Maguire,2 and John O'Keefe1 'Institute of Cognitive Neuroscience and Department of Anatomy and Developmental Biology University College London 17 Queen Square London WC1 N SAR ^ellcome Department of Imaging Neuroscience Institute of Neurology 12 Queen Square London WC1 N 3BG United Kingdom Finding one's way around an environment and remem- bering the events that occur within it are crucial cogni- tive abilities that have been linked to the hippocampus and medial temporal lobes. Our review of neuropsy- chological, behavioral, and neuroimaging studies of human hippocampal involvement in spatial memory concentrates on three important concepts in this field: spatial frameworks, dimensionality, and orientation and self-motion. We also compare Variation in hippo- campal structure and function across and within spe- cies. We discuss how its spatial role relates to its accepted role in episodic memory. Five related studies use virtual reality to examine these two types of mem- ory in ecologically valid situations. While processing of spatial scenes involves the parahippocampus, the right hippocampus appears particularly involved in memory for locations within an environment, with the left hippocampus more involved in context-dependent episodic or autobiographical memory. Background Impairments of spatial and episodic memory are often the first Symptoms experienced by patients with dam- age to the medial temporal lobes due to progressive pathologies such äs Alzheimer's disease (e.g. Kolb and Wishaw, 1996). The medial temporal lobes and the hip- pocampus in particular have long been implicated in the acquisition of new memories (Scoville and Milner, 1957), with visuo-spatial memory predominantly associated with the right (Smith and Milner, 1981) and verbal or narrative memory with the left (Frisk and Milner, 1990). There is now a consensus that the human hippocam- pus is involved in episodic memory (Eichenbaum and Cohen, 2001; Kinsbourne and Wood, 1975; O'Keefe and Nadel, 1978; Squire and Zola-Morgan, 1991; Vargha- Khadem et al, 1997), i.e. memory for personally experi- enced events sei in a spatio-temporal context (Tulving, 1983). Equally, there is little dispute that the hippocam- pus in infrahumans is involved in spatial or topographical memory (Eichenbaum and Cohen, 2001; Morris et al„ 1982; O'Keefe and Nadel, 1978), and this spatial role appears to remain in humans (Abrahams et al., 1999; Maguire et al.,1996a, 1998a, 1999; Spiers et al., 2001 a; Vargha-Khadem et al., 1997). This latter observation is consistent with the cognitive map theory characterization of hippocampal function (O'Keefe and Nadel, 1978,1979). The cognitive map theory proposes that the hippo- campus of rats and other animals represents their envi- ronments, locations within those environments, and their contents, thus providing the basis for spatial mem- ory and flexible navigation. When it comes to humans, the theory suggests a broader function for the hippo- campus, based at least in part on lateralization of func- tion. The right hippocampus is still viewed äs encoding The hippocampus has also been ascribed a much broader role in both animals and humans, encompassing episodic and spatial memory along with many other types of memory. Primary among these broader charac- terizations are "declarative" memory (Squire and Zola- Morgan, 1991), and "flexible relational" memory (Cohen and Eichenbaum, 1993). Declarative memory refers to all forms of conscious or explicit memory, including epi- sodic, semantic, and familiarity-based recognition, with the additional Suggestion that the hippocampus plays a time-limited role (i.e., being needed only for recently acquired information). Under the flexible-relational hy- pothesis, hippocampal function is closely related to de- clarative memory, including all explicit memory (Eichen- baum, 1999), but also favors flexible uses of memory and relational learning (e.g., performing transitive inference; Bunseyand Eichenbaum, 1996; Dusekand Eichenbaum, 1997). See also Aggleton and Brown (1999) for a review. Here, we focus on the involvement of the human hip- pocampus in spatial memory and review relevant neuro- psychological, behavioral, and neuroimaging studies. In addition, we consider how results concerning its spatial role may relate to its accepted role in episodic memory. We also indicate some links to the pertinent nonhuman data but do not consider this field in any detail (see Eichenbaum et al., 1999, and O'Keefe, 1999, for reviews). In the first instance, three concepts of particular impor- tance to understanding spatial memory will be briefly reprised and key evidence reviewed: spatial frame- works, dimensionality, and orientation and self-motion. We will then discuss how the introduction of a novel methodology, namely the use of virtual reality to create large-scale, controlled environments, has provided new opportunities to explore these key concepts and the role of the hippocampus in space. In particular, a series of five recent virtual reality (VR) experiments that exam- ined topographical and episodic memory within large- scale spatial contexts will be considered in detail (Bur- gess et al„ 2001 b; King et al., 2002; Maguire et al., 1998aThe cognitive map theory proposes that the hippo-campus of rats and other animals represents their envi- ronments, locations within those environments, andtheir contents, thus providing the basis for spatial mem- ory and flexible navigation. When it comes to humans, the theory suggests a broader function for the hippo- campus, based at least in part on lateralization of func- tion. The right hippocampus is still viewed äs encoding spatial relationships, but the left has the altered function of storing relationships between linguistic entities in the form of narratives. In addition, one or both hippocampi incorporate temporal information derived from the fron- tal lobes, which serves to timestamp each individual visit to a location, thus providing the basis for a spatio- temporal contextual or episodic memory System. The hippocampus has also been ascribed a much broader role in both animals and humans, encompassing episodic and spatial memory along with many other types of memory. Primary among these broader charac- terizations are "declarative" memory (Squire and Zola- Morgan, 1991), and "flexible relational" memory (Cohen and Eichenbaum, 1993). Declarative memory refers to all forms of conscious or explicit memory, including epi- sodic, semantic, and familiarity-based recognition, with the additional Suggestion that the hippocampus plays a time-limited role (i.e., being needed only for recently acquired information). Under the flexible-relational hy- pothesis, hippocampal function is closely related to de- clarative memory, including all explicit memory (Eichen- baum, 1999), but also favors flexible uses of memory and relational learning (e.g., performing transitive inference; Bunseyand Eichenbaum, 1996; Dusekand Eichenbaum, 1997). See also Aggleton and Brown (1999) for a review. Here, we focus on the involvement of the human hip- pocampus in spatial memory and review relevant neuro- psychological, behavioral, and neuroimaging studies. In addition, we consider how results concerning its spatial role may relate to its accepted role in episodic memory. We also indicate some links to the pertinent nonhuman data but do not consider this field in any detail (see Eichenbaum et al., 1999, and O'Keefe, 1999, for reviews). In the first instance, three concepts of particular impor- tance to understanding spatial memory will be briefly reprised and key evidence reviewed: spatial frame- works, dimensionality, and orientation and self-motion. We will then discuss how the introduction of a novel methodology, namely the use of virtual reality to create large-scale, controlled environments, has provided new opportunities to explore these key concepts and the role of the hippocampus in space. In particular, a series of five recent virtual reality (VR) experiments that exam- ined topographical and episodic memory within large- scale spatial contexts will be considered in detail (Bur- gess et al„ 2001 b; King et al., 2002; Maguire et al., 1998a Je länger ein Londoner Taxifahrer fuhr um so größer war sein rechter hinterer Hippokampus

15 Einteilung der Gedächtnisse nach der Art des Wissens
Deklaratives G. Nicht deklaratives Fakten Ereignisse Prakt. Fähig- keiten Nicht asso- ziatives L. Einfaches assoziat. Lernen Priming Dia Memory, Vorlesung menschl. Gehirn Gazzaniga, Ivry, Mangun: Cognitive Neuroscience, P. 257, Fig. 7.8 Handeln und Vorstellen mit Bewusstsein (episodisch) Handeln nach Wissen ohne dass die Inhalte bewusst werden müssen

16 Einteilung von Lernvorgängen Einteilung des Gedächtnisses
nach der Zeit: Kurzzeitgedächtnis Mittelzeitgedächtnis Langzeitgedächtnis Arbeitsgedächtnis Nicht assoziatives Lernen Gewöhnung (Habituation) Sensitisierung Assoziatives Lernen Klassische Konditionierung Instrumentelle Konditionierung Beobachtendes Lernen Navigationslernen Spielendes Lernen Einsichtiges Lernen Prägungsartiges Lernen nach dem Inhalt: Implizites Wissen praktische Fähigkeiten, einfaches assoziatives und nicht assoziatives Lernen Priming Explizites Wissen Fakten, Ereignisse Nicht deklaratives (implizites Lernen) Deklaratives (explizites) Lernen

17 Unser Gehirn hat einen Gedächtnisorganisator
für bewusst werdende Inhalte – den Hippokampus. Das Organisationsprinzip ist der Raum und die Zeit – wie in einem geordneten Bücherschrank. Die Gedächtnisinhalte sind an vielen anderen Stellen im Gehirn verteilt nieder- gelegt. Der Hippokampus sorgt dafür, dass sie an den richtigen Stellen abgelegt werden und wieder aufgerufen werden

18 Kortikale Assoziationsareale
Stammhirn, Rückenmark motorischer Ausgang Hypothalamus, autonom. NS Hormone Prozedurales Gedächtnis Emotionales Gedächtnis, Modulation Deklaratives (episodisches) Gehirnbereiche, die bei verschiedenen Gedächtnisarten beteiligt sind

19 Maguire, Valentine, Wilding, Kapur, 2003
Mit welchen Teilen des Gehirns werden Super Gedächtnisleistungen vollbracht? Testmuster Lerntest Vergleichstest was kam zuerst? alles gleich? Ja/Nein links/rechts Routes to remembering: the brains behind superior memory Eleanor A. Maguire1, Elizabeth R. Valentine2, John M. Wilding2 and Narinder Kapur3 1 Welkome Department ofImagingNeuroscience, Institute ofNeurology, University College London, 12 Queen Square, London WC1N3BG, UK 2 Department ofPsychology.RoyalHolloway, University of London, Egham, Surrey TW200EX, UK 3 Department ofCUnical Neuropsychology, WessexNeurological Centre, Southampton General Hospital and Department ofPsychology University of Southampton, Southampton S0166YD, UK Correspondence should he addressed to RAM. Published online 16 December 2002; doi: /nn988 Why do some people have superior memory capabilities? We addressed this age-old question by examining individuais renowned for outstanding memory feats in forums such äs the Worid Memory Championships. Using neuropsychological measures, äs well äs structural and functional brain imag- ing, we found that superior memory was not driven by exceptional intellectual ability or structural brain differences. Rather, we found that superior memorizers used a spatial learning strategy, engaging brain regions such äs the hippocampus that are critical for memory and for spatial memory in particular. These results illustrate how functional neuroimaging might prove valuable in delineating the neural Substrates of mnemonic techniques, which could broaden the scope for mem- ory improvement in the general population and the memory-impaired. Humans have an enduring fascination with memory. We are moved by the devastating effects ofAlzheimer's disease on the one band, and are often covetous of superior memory on the other. A testament to the latter is the interest throughout history in prödigious individuais renowned for spectacular mnemonic feats1"3. Despite its populär appeal, however, exceptional memo- ry is seidom addressed in mainstream research3"5, a fact which Stands m contrast to the voluminous literature on memory loss. Although our understanding offne functional anatomy of human memory in the context of brain damage has certainly grown over the years, there have been far fewer attempts to explore the other end ofthe cognitive spectrum—those with superior memory. One reason for the lack of interest may be that individuais with exceptionally good memories are in some way distmct, lim- iting the inferences that can be made about memory in the gen- eral population. However, it is equally possible that individuais with exceptional memory merely make more or better use of memory capabilities that we all possess, or perhaps they employ clever mnemonic devices or learning strategies3. Given that the basis of superior memory is still largely unknown, important insights into the structure of human memory may be missed by not exploring better-than-average memorizers äs well äs those with memory deficits. Moreover, understanding superior mem- ory may also inform our efforts to improve memory in the gen- eral population and the memory-impaired. Some clues about the nature of superior memory can and have been gleaned from behavioral testing3. However, documenting the neural under- pinnings would offer significant insights into the mechanisms of exceptional memory performance. Expertise within specific knowledge domains (such äs chess6, caiculation7, and cars andbirds8) has been examined previously with functional neuroimaging, but people with more general- ized superior memory abilities have not been studied. Here we report the neural basis of memory in such individuais. Although exceptional individuais have been sporadically documented in the literature, they are more difficult to find than those with memory problems, who often seek advice. However, the Wörid Memory Championships—a unique gathering of individuais per- forming exceptional memory feats across a ränge oftasks—is held annually in London3'9. We therefore exammed eight partic- ipants who are or have been placed at the highest levels in the Worid Memory Championships, äs well äs two other individu- ais studied previously for their extraordinary memory accom- plishments (see reports ofTE and TM in ref. 3). The ten superior memorizers (SMs) were compared with ten matched control sub- jects who did not report any exceptional memory capabilities. We set out to address three main questions. First, do SMs dif- fer fi-om control subjects in other intellectual abilities, which could drive the apparent superiority in memory functioning? Second, äs there are reports of structural brain differences in groups with specific skills10'11, are SMs predisposed to superior memory per- formance byvirtue ofhaving structurally different brains com- pared with control subjects, either innately or by developing their superior memory10? And finally, using mnctional magnetic res- onance imaging (fMRI), we investigated if there were differences between SMs and controls in the brain areas engaged while pro- cessing incoming information. The present results show that supe- rior memory was not due to exceptional intellect or to structural brain differences. Rather, we found that superior memory was associated with the preferential engagement of three brain regions in particular: medial parietal cortex, retrosplenial cortex and the right posterior hippocampus. Maguire, Valentine, Wilding, Kapur, 2003

20 „Begreifen“ „bildhaftes Vorstellen“ raum-zeitliches Organisieren
Bereiche des Gehirns, die bei Menschen mit Super Gedächtnis besonders stärker aktiv sind rechtes Kleinhirn „Begreifen“ linker medialer parietaler Gyrus „bildhaftes Vorstellen“ Routes to remembering: the brains behind superior memory Eleanor A. Maguire1, Elizabeth R. Valentine2, John M. Wilding2 and Narinder Kapur3 1 Welkome Department ofImagingNeuroscience, Institute ofNeurology, University College London, 12 Queen Square, London WC1N3BG, UK 2 Department ofPsychology.RoyalHolloway, University of London, Egham, Surrey TW200EX, UK 3 Department ofCUnical Neuropsychology, WessexNeurological Centre, Southampton General Hospital and Department ofPsychology University of Southampton, Southampton S0166YD, UK Correspondence should he addressed to RAM. Published online 16 December 2002; doi: /nn988 Why do some people have superior memory capabilities? We addressed this age-old question by examining individuais renowned for outstanding memory feats in forums such äs the Worid Memory Championships. Using neuropsychological measures, äs well äs structural and functional brain imag- ing, we found that superior memory was not driven by exceptional intellectual ability or structural brain differences. Rather, we found that superior memorizers used a spatial learning strategy, engaging brain regions such äs the hippocampus that are critical for memory and for spatial memory in particular. These results illustrate how functional neuroimaging might prove valuable in delineating the neural Substrates of mnemonic techniques, which could broaden the scope for mem- ory improvement in the general population and the memory-impaired. Humans have an enduring fascination with memory. We are moved by the devastating effects ofAlzheimer's disease on the one band, and are often covetous of superior memory on the other. A testament to the latter is the interest throughout history in prödigious individuais renowned for spectacular mnemonic feats1"3. Despite its populär appeal, however, exceptional memo- ry is seidom addressed in mainstream research3"5, a fact which Stands m contrast to the voluminous literature on memory loss. Although our understanding offne functional anatomy of human memory in the context of brain damage has certainly grown over the years, there have been far fewer attempts to explore the other end ofthe cognitive spectrum—those with superior memory. One reason for the lack of interest may be that individuais with exceptionally good memories are in some way distmct, lim- iting the inferences that can be made about memory in the gen- eral population. However, it is equally possible that individuais with exceptional memory merely make more or better use of memory capabilities that we all possess, or perhaps they employ clever mnemonic devices or learning strategies3. Given that the basis of superior memory is still largely unknown, important insights into the structure of human memory may be missed by not exploring better-than-average memorizers äs well äs those with memory deficits. Moreover, understanding superior mem- ory may also inform our efforts to improve memory in the gen- eral population and the memory-impaired. Some clues about the nature of superior memory can and have been gleaned from behavioral testing3. However, documenting the neural under- pinnings would offer significant insights into the mechanisms of exceptional memory performance. Expertise within specific knowledge domains (such äs chess6, caiculation7, and cars andbirds8) has been examined previously with functional neuroimaging, but people with more general- ized superior memory abilities have not been studied. Here we report the neural basis of memory in such individuais. Although exceptional individuais have been sporadically documented in the literature, they are more difficult to find than those with memory problems, who often seek advice. However, the Wörid Memory Championships—a unique gathering of individuais per- forming exceptional memory feats across a ränge oftasks—is held annually in London3'9. We therefore exammed eight partic- ipants who are or have been placed at the highest levels in the Worid Memory Championships, äs well äs two other individu- ais studied previously for their extraordinary memory accom- plishments (see reports ofTE and TM in ref. 3). The ten superior memorizers (SMs) were compared with ten matched control sub- jects who did not report any exceptional memory capabilities. We set out to address three main questions. First, do SMs dif- fer fi-om control subjects in other intellectual abilities, which could drive the apparent superiority in memory functioning? Second, äs there are reports of structural brain differences in groups with specific skills10'11, are SMs predisposed to superior memory per- formance byvirtue ofhaving structurally different brains com- pared with control subjects, either innately or by developing their superior memory10? And finally, using mnctional magnetic res- onance imaging (fMRI), we investigated if there were differences between SMs and controls in the brain areas engaged while pro- cessing incoming information. The present results show that supe- rior memory was not due to exceptional intellect or to structural brain differences. Rather, we found that superior memory was associated with the preferential engagement of three brain regions in particular: medial parietal cortex, retrosplenial cortex and the right posterior hippocampus. raum-zeitliches Organisieren rechter hinterer Hippokampus

21 Activity during memory
Aktivität während der Gedächtnisbildung Während des Gedächtnisabrufs Das Gedächtnis entsteht nicht gleich an dem Ort, wo es langfristig gespeichert wird Das Gedächtnis entsteht aus dem Lernen durch mehrere schrittweise Prozesse. Dies nennt man die Gedächtniskonsolidierung. Dabei organisiert das Gehirn die optimale Einspeicherung und Verknüpfung mit bereits vorhandenen Gedächtnisinhalten. Activity during memory

22 Die Orte des Gedächtnisses im Gehirn:
Das Gedächtnis ist nicht an einem Ort lokalisiert, sondern verteilt auf viele Ort. Das hängt von den beteiligten Sinnen, der Motorik und der Art der Gedächtnisinhalte ab. Eine wichtige Rolle spielt der Hippokampus für die Überschreibung des kurzzeitigen in das langzeitige Gedächtnis von solchen Inhalten, die uns bewusst werden (deklaratives Gedächtnis). Eine besondere Rolle spielt der präfrontale Kortex für die Speicherung von kognitiven Formen des Gedächtnis in dem viele verschiedene sensorische Eingänge und andere Gedächtnisinhalten miteinander verknüpft werden. Während der Konsolidierung des Gedächtnis kann sich sein Ort verlagern, also andere Orte im Gehirn zur Speicherung heranziehen. Darin äußert sich die Selbstorganisation des Gehirns.

23 Gazzaniga, Ivry, Mangun: Cognitive Neuroscience
Nur wenn Aufmerksamkeit auf ein Objekt gerichtet wird dann wird es gelerntAufmerksamkeit Anteriores cinguläres Aufmerksamkeitszentrum Arbeitsgedächtnis für Raum Visuelle Orientierung Objekte Wort- bedeutung Aufmerksamkeit, Vorlesung menschl. Gehirn Gazzaniga, Ivry, Mangun: Cognitive Neuroscience, P. 460, Fig Visuelle Objekteigenschaften Gazzaniga, Ivry, Mangun: Cognitive Neuroscience

24 Dafür sind die Belohnungssysteme im Gehirn zuständig
Beim Lernen muss dem Gehirn mitgeteilt werden, was gelernt werden soll. Dafür sind die Belohnungssysteme im Gehirn zuständig Modulatorische Systeme im Säugergehirn Belohnungssystem Dopamin Noradrenalin FIGURE 2 Ascending monoamine neurotransmitter systems. Figure shows schematic sagittal (A–D) and coronal (E) sections through the lateral hypothalamus of a rat brain. (A) Origin and distribution of central noradrenergic pathways. Note noradrenergic cell groups A1–A7, including the locus ceruleus (A6). DNAB, dorsal noradrenergic ascending bundle; VNAB, ventral noradrenergic ascending bundle. (B) Origin and distribution of central dopamine pathways. Note dopaminergic cell groups A8–A10. (C) Origin and distribution of central cholinergic pathways. Note rostral cell groups. NBM, nucleus basalis magnocellularis (Meynert in primates); MS, medial septum; VDBB, vertical limb nucleus of the diagonal band of Broca; HDBB, horizontal limb nucleus of the diagonal band of Broca. (D) Origin and distribution of central serotoninergic pathways. Note cell groups in the raphe nucleus, B4–B9. MFB, medial forebrain bundle; PFC, prefrontal cortex; VS, ventral striatum; DS, dorsal striatum. Based on T. W. Robbins and B. J. Everitt, in The Cognitive Neurosciences. MIT Press, Cambridge MA, 1995; reproduced with permission. (E) Schematic coronal section through the rat brain at the level of the ventromedial hypothalamus. LH lesions could disrupt various ascending monoaminergic fibers. CC, corpus callosum; CP, caudate-putamen; DMH, dorsomedial hypothalamus; IC, internal capsule; GP, globus pallidus; PVH, paraventricular hypothalamus; LH, lateral hypothalamus; FX, fornix; VMH, ventromedial hypothalamus. Modified from Robbins (1986), with permission. View JPG    View PDFFIGURE 3 Distinguishing between sensory and response factors. Rats were trained Acetylcholin Serotonin


Herunterladen ppt "Im Gehirn haben viele Fähigkeiten ihren Ort"

Ähnliche Präsentationen


Google-Anzeigen