Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Geoobjekte und ihre Modellierung II Ebenen der Modellierung Konzeptionelle Modellierung –Entity-Relationship (ER)-Konzept –Layer-Konzept –objektorientiertes.

Ähnliche Präsentationen


Präsentation zum Thema: "Geoobjekte und ihre Modellierung II Ebenen der Modellierung Konzeptionelle Modellierung –Entity-Relationship (ER)-Konzept –Layer-Konzept –objektorientiertes."—  Präsentation transkript:

1 Geoobjekte und ihre Modellierung II Ebenen der Modellierung Konzeptionelle Modellierung –Entity-Relationship (ER)-Konzept –Layer-Konzept –objektorientiertes Konzept Vektor- und Raster-Modell, Hybrides Modell

2 Ebenen der Modellierung (unterschiedliche Abstrationsniveaus)

3 3 Ebenen der Modellierung 1. Externe Ebene: Thematische Modellierung => fachspezifisches Modell (Geowissenschaftler) 2. Konzeptionelle Ebene: Abbildung des fachspezifischen Modells in konzeptionelles Modell Strukturierung und Organisation der den Geoobjekten zugeordneten geometrischen, topologischen, thematischen, dynamischen Daten. (Geoinformatiker)

4 3. Interne Ebene: Festlegung systemnaher Modellparameter auf der Grundlage des konzeptionellen Modells z.B.: Datentypen,Verwaltung der Daten in den Speichermedien,optimierte Zugriffsmechanismen auf die Daten. (Informatiker)

5 Beispiel: Modellierung eines Flußsystems für hydrologische Fragestellung. Die Modellierung auf den drei Ebenen umfaßt z.B. folgende Festlegungen:

6 Externe Ebene: Thematisches Modell: Flußsystem A mit mehreren Nebenflüssen mit Verlauf der Flüsse mit Abflussmenge, Fließgeschwindigkeit, Schwebstoffanteil

7 Konzeptionelle Ebene: Jeder Fluss erhält einen eindeutigen Objektidentifikator (Schlüsselnummer) Der Verlauf der Flüsse wird in x,y-Koordinaten abgelegt Die Parameter (Abflußmenge usw.) werden beschrieben durch Parametername und Maßeinheit Die Meßwerte werden durch Parametername Meßdatum, und Meßwert modelliert

8 Interne Ebene: Die Objektidentifikatoren der Flüsse sind vom Datentyp Integer Koordinaten haben den Datentyp Real Die Daten werden „gekachelt“ (Quadtree- Struktur) gespeichert Der Zugriff auf die Sachdaten wird mit der Datenbankabfragesprache SQL (Structured Query Language) realisiert

9 Konzepte zur konzeptionellen Datenmodellierung

10 Modellierung mit dem Entity-Relationship-Konzept Modellierung der Struktur von Systemen mittels Entitäten (Entities) und Entitätsklassen Eigenschaften (Attribute) Relationen

11 Entität = ein eindeutig identifizierbares, mit Eigenschaften ausgestattetes Ganzes, das dadurch von anderen Entitäten unterscheidbar ist. Eine Menge von Entitäten mit gleichen Merkmalen wird als Entitätsklasse (Entitätstyp) bezeichnet. Beispiele: Grundstück 171/1 Gebäude Chaussee Str. 89

12 Die Begriffe Entität und Objekt werden in der Praxis häufig nebeneinander verwendet; Zusammenhang verdeutlicht, ob 'Objekt' im Sinn von Geoobjekt oder im ER-Sinne als Entität Objekt-Begriff ->Modellierung der realen Welt, Entitäts-Begriff -> Modellierung von Daten

13 Attribute = Merkmale von Entitätstypen Attributwerte = Merkmalswerte einer Entität Domäne eines Attributs = Menge aller möglichen Werte des Attributes Beispiel: Entität „Grundstück“ mit AttributAttributwert Nummer171/3 Größe1000qm EigentümerMeier

14 Relationen (relationships) = Beziehungen zwischen Entitäten unterschiedlichen Typs Beispiel: Grundstück liegt an Straße Der Relationsbegriff entspricht dem der Mathematik: Eine Relation ist eine durch bestimmte Eigenschaften definierte Teilmenge der Produktmenge zweier Entitätstypen (siehe Kap.mathematische Grundlagen).

15 Beispiel: Entitätstyp: Wetterstation Entität: Die Wetterstation A in Münster Attribute: Höhenlage, Lufttemperatur in 2m Höhe, Niederschlagshöhe Attributwerte:73 müNN; 4,2  C; 12,3 mm Domäne:für die Niederschlagshöhe: rechtsseitig offenes Intervall [0,  ) Relationen:Wetterstation hat Sensoren; Sensor ist hergestellt von Hersteller

16 Unterscheidung von Relationen: Untertscheidung nach Kardinalität, danach ob sie eine oder mehrere Entitäten miteinander in Beziehung setzen. Unterscheidung in 3 grobe Mengenbeziehungen

17 Es seien A und B Entitätstypen und R eine Relation R(a,b) mit a  A und b  B: 1:1 - Beziehung Zu jedem a  A gibt es genau ein b  B mit R(a,b) 1:n - Beziehung Zu jedem a  A gibt es ein oder mehrere b i  B mit R(a,b i ) m:n - Beziehung: Zu jedem a  A gibt es ein oder mehrere b i  B mit R(a,b i ) und zu jedem b  B gibt es ein oder mehrere a j  A mit R(a j,b)

18

19 Beispiel: 1:1 Eine Wetterstation hat genau einen Standort 1:nEine Wetterstation hat eine oder mehrere Sensoren (aber ein Sensor kann nicht gleichzeitig zu mehreren Wetterstationen gehören) m:n Eine Wetterstation mißt einen oder mehrere meteorolog. Parameter, ein meteorolog. Parameter kann an einer oder an mehreren Wetterstationen gemessen werden.

20 Graphische Darstellung des ER-Modells in Form eines ER-Diagrammes Symbole eines ER-Diagramms

21 ER-Diagramm als konzeptionelles Modell einer Wetterstation

22 Objektorientiertes Konzept Modellierung der Struktur (=> Klassen-Attribute) und des Verhaltens (=> Klassen-Operationen) von Systemen mittels –Objekten –Klassen –Beziehungen. Anwendung bei OO-Analyse und Design (Modellierung) von Systemen OO-Programmierung OO-Datenbankmanagementsystemen

23 Eckpfeiler dieses OO-Konzepts: Objekte Klassen Attribute und Operationen Beziehungen Kapselung Polymorphismus Vererbung

24 Ein Objekt wird im Rahmen des modellierten Systems als eine Einheit angesehen. Es ist eine Instanz (Exemplar) seiner Klasse. Die Eigenschaften eines speziellen Objektes werden durch Attributwerte beschrieben, die Attribute sind in der zugehörigen Klasse definiert. In einem Objekt können ihm zugeordnete Operationen (Methoden) angestoßen und ausgeführt werden Operation A objektname Objekt

25 Eine Klasse (Typ) spezifiziert die Struktur und das Verhalten der zu ihr gehörenden Objekte. Die Attribute der Klasse charakterisieren die Struktur, und die Operationen das Verhalten der zugehörigen Objekte. Beispiel: Vierecke bilden eine Klasse mit z.B. Attributen: Kantenlänge_1, Kantenlänge_2, Kantenlänge_3, Kantenlänge_4 Operationen: Berechne_Flächeninhalt, Berechne_Umfang Klasse

26 Kapselung Objektattribute und zugeordneten Operationen sind gemeinsam mit dem Objekt / der Klasse gekapselt, und damit abgekapselt von den Applikationen => Applikationen können Methoden nutzen, ohne über sie Bescheid zu wissen. Beispiel: Generalisierung bzw. graphische Attributierung von Straßen

27 Polymorphismus Polymorphismus ('Vielgestaltigkeit') Fähigkeit einer Operation, sich in unterschiedlichen Klassen verschieden zu verhalten. Beispiel: Generalisierung und graph. Attributierung von Straßen bzw. Flußläufen

28 Vererbung Die Attribute und Operationen einer Oberklasse werden an alle zugehörigen Unterklassen weitergegeben, also vererbt. Beispiel: Klasse 'Fließgewässer‘: Vererbung der Attribute (z.B. Name_Fließgewässer, Größe_Einzugsgebiet,) Operation (z.B. berechne_mittleres_Gefälle)

29 Beziehungen Beziehungen (Assoziationen) geben die Verbindung zwischen einzelnen Klassen und deren Objekten wieder. Beispiel: Ein Fließgewässer besteht aus Fließgewässer- abschnitten; ein Fließgewässerabschnitt hat einen Anfangs- und einen Endpunkt; Anfangs- und Endpunkte haben Koordinatentripel.

30 Genaue Angabe der Kardinalität der Beziehung WetterstationSensor hat ein 11..8

31 Spezialfall der Assoziation = Aggregation. Klassen stehen in einer Ganzes-Teile-Hierarchie (hat-eine-Beziehung). Eine Aggregation bildet die Zusammensetzung eines Objektes aus einer Menge von Einzelteilen ab

32 Beispiel Wetterstation

33 Begriff „Entität - Objekt“ Erklärung aus Zusammenhang: 'Objekt' in einem allgemeinen Sinne (z.B. Geoobjekt) im ER-Sinne (als Entität) im OO-Sinne (als Instanz einer Klasse)

34 Layer-Konzept Modellierung der Struktur von Systemen mittels Informationsschichten = Layer Organisation von Layern: Geoobjekte gleicher geometrischer Dimension und gleicher Klassenzugehörigkeit in einzelnen Layern enthalten Klassisches Konzept aus Kartographie

35 Anwendung: Je nach fachlichem Bedarf deckungsgleiches Übereinanderlegen ausgewählter Schichten (digital!). Gesamtsicht aller Schichten ergibt erforderliche Information. Wichtig! Alle Schichten müssen besitzen gleiches Koordinatensystem gleichen Maßstab gleichen Raumausschnitt

36 Datenwelten Vektor- /Rastermodell

37 Vektormodell Geometrisches Grundelement des Vektor- Modells = Punkt Er ist durch die Angabe seiner Koordinaten im 2D- oder 3D-Raum eindeutig definiert. im topologischen Sinn wird Punkt analog zur Graphentheorie als Knoten bezeichnet. Dem Punkt/Knoten können Attribute als thematische Informationen angehängt werden (z.B. Höhen-, Niederschlagswert).

38 Abbildung von Geoobjekten im Vektormodell punkthafte Geoobjekte = Punkt, der durch die Angabe seiner Koordinaten im 2D- oder 3D- Raum eindeutig definiert ist. linienhafte Objekte = Linienzug der durch Punkt- Koordinaten definiert ist. flächenhafte Geoobjekte = geschlossener Linienzug

39 Zuordnung der thematischen Attribute Attribute A, B, C Punkthaftes Objekt Linienhaftes Objekt Flächenhaftes Objekt

40 Vor- und Nachteile des Vektormodells sehr gut für Modellierung von Einzelobjekten gut für punkt- und linienhafte Objekte, weniger gut für flächenhafte kontinuierliche Verteilungen Geoobjekte sind vektoriell mit hoher geometrischer Genauigkeit der Lage und Form darstellbar, allerdings: hoher Aufwand bei Erfassung geringere Datenmengen im Vergleich zum Raster- Konzept Logische und algebraische Operationen im Vektor- Modell (z.B. Verschneiden, Nachbarschaften) aufwendiger als beim Raster-Modell Koordinatentransformationen sehr einfach zu berechnen

41 Rastermodell (Grid model) Grundelement des zwei-dimensionalen Raster- Modells = Rasterzelle oder Pixel (picture element) Grundelement des drei-dimensionalen Raster- Modells = Voxel. Die einzelnen Pixel des Raster-Modells werden als eine flächenhafte Einheit mit homogenen Eigenschaften aufgefasst

42 Abbildung von Geoobjekten im Rastermodell punkthafte Geoobjekte = 1 Rasterzelle linienhafte Objekte = zusammenhängende Folge von Rasterzellen flächenhafte Geoobjekte = Zell-Haufen mit geschlossenem Umriss

43 Raster => vergröberte Geometrie => Frage: Ist Pixelfolge in der Realität Linienstruktur oder gestreckte Flächenstruktur? Lösung: feinere Raster-Struktur = feinere Objektstruktur jedoch: je feiner das Raster, je größer die Datenmenge Lösung: Komprimierungsverfahren, um den Speicherbedarf von Rasterdaten zu verringern (z.B. Lauflängen- Codierung, Skelettierung). Problematik

44 Zuordnung der thematischen Attribute Unterschied zu Vektordaten? Die Attributwerte werden beim Raster-Modell oft als Grauwerte bezeichnet (Begriff aus der Bildverarbeitung). layer-bezogenpixel-bezogen

45 Geometrie von Rasterzellen Wichtig! In einem Rastermodell gibt es keine durch Koordinatentupel definierten Punkte. => Die übliche euklidische Distanz ist nicht definiert Zur Definition der Geometrie von Rasterzellen ist daher festzulegen  ein Ursprung des Rasters  die Orientierung des Rasters und  die Rasterweite (Maschengröße)

46 Und: Zur geometrischen Lagebeschreibung keine Koordinaten-Tupel sondern nur Index-Tupel (i,j). Index-Tupel beschreiben die Lage einer Rasterzelle in Bezug auf den Ursprung (1,1) des Rasters.

47 Kanten-Metrik (Häuserblock-Metrik): Die Distanz zweier Rasterzellen ist gleich der Mindestanzahl der überschrittenen Zell-Kanten Ecken-Kanten-Metrik (Schachbrett-Metrik): Die Distanz zweier Rasterzellen ist gleich der Mindestanzahl der überschrittenen Zell-Kanten oder Zell-Ecken Metrik im Rastermodell

48 In praktischen Anwendungen meist Verwendung der euklidischen Metrik => Kunstgriff erforderlich 1) Unterlegung des Rastermodells mit vektoriellem Gittermodell. Gittergröße = Rastergröße 2) Zuordnung des Mittelpunkts (Schwerpunkts) zu jeder Gitterfläche 3) Berechnung der der euklidischen Distanz der Gitterflächen-Mittelpunkte => Distanz der entsprechenden Rasterzellen

49 Raster-Modellierung von Geoobjekten überwiegend mit regelmäßigen Maschen, da bei Datenmodellen und Berechnungen leichter zu handhaben. In der praktischen Anwendung spielen die wichtigste Rolle – Dreieck- und Sechseck-Maschen – quadratische Maschen

50 Vor- und Nachteile des Rastermodells Einzelobjekte können bezüglich Geometrie und Topologie nur approximativ (weder lagegenau noch formgetreu) dargestellt werden; Erfassungsaufwand mit Hilfe von Scannern vergleichsweise gering anfallenden Datenmengen beim Raster-Modell im Vergleich zum Vektor-Modell groß Logische und algebraische Operationen sind auf der Basis von Raster-Modellen einfach durchzuführen Koordinatentransformationen dagegen aufwendiger als beim Vektor-Modell, da keine reellwertigen Koordinaten

51 Hybride Modelle Hybrid-Modell: Verarbeitung von Vektor- und Raster- Strukturen. Kombination der Vorteile beider Modelle

52 Konvertierung der Geoobjekte Vektor-Raster- Konvertierung relativ einfach durchführbar Raster-Vektor- Konvertierung nur teilweise automatisch lösbar Warum?


Herunterladen ppt "Geoobjekte und ihre Modellierung II Ebenen der Modellierung Konzeptionelle Modellierung –Entity-Relationship (ER)-Konzept –Layer-Konzept –objektorientiertes."

Ähnliche Präsentationen


Google-Anzeigen