Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion Die Arrhenius-Gleichung lässt sich auf Basis der Stoßtheorie deuten (hardsphere collision.

Ähnliche Präsentationen


Präsentation zum Thema: "Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion Die Arrhenius-Gleichung lässt sich auf Basis der Stoßtheorie deuten (hardsphere collision."—  Präsentation transkript:

1 Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion Die Arrhenius-Gleichung lässt sich auf Basis der Stoßtheorie deuten (hardsphere collision theory). Nicht alle Zusammenstöße führen zur Reaktion, sondern nur die Zusammenstöße besonders energiereicher Moleküle. Der Bruchteil jener Molekül-Zusammenstöße, bei denen die Stoßenergie entlang der Verbindungsachse der Moleküle E a übersteigt, ist gleich (=Boltzmann‘scher Faktor), daher gilt wobei der Wert der Geschwindigkeitskonstante wäre, wenn keine Aktivierungsenergie nötig wäre.

2 Deutung der Arrhenius-Gleichung ändert sich nur wenig mit der Temperatur (~ mit T 1/2 ) und kann (über weniger ausgedehnte Temperatur- bereiche) näherungsweise als konstant angesehen werden. Die bekannte Erhöhung der Reaktionsgeschwindigkeit mit steigender Temperatur beruht hauptsächlich auf einer Zunahme des Anteils energiereicher Zusammenstöße und nur untergeordnet auf einer Zunahme der Gesamt-Anzahl der Zusammenstöße pro Zeiteinheit. Die durchschnittliche kinetische Energie der Moleküle eines Gases ist proportional zur absoluten Temperatur des Gases. Die einzelnen Moleküle bewegen sich jedoch mit verschiedenen Geschwindigkeiten. Bei einer Änderung der Reaktionstemperatur ändert sich die Durchschnitts-Energie der reagierenden Stoffe. Zur gleichen Zeit ändert sich auch die Maxwell-Boltzmann‘sche-Verteilung der Moleküle (= Verteilung des Betrages der Teilchengeschwindigkeiten in einem idealen Gas) Bild: Brown/LeMay/Bursten, Chemie die zentrale Wissenschaft, Pearson Studium

3 Im Faktor ist berücksichtigt, dass die zum Übergangszustand zusammentretenden Moleküle keine mathematischen Punkte sind, sondern räumliche Ausdehnung und Form besitzen, sodass nur Stöße mit geeigneter räumlicher Anordnung zum Erfolg führen können (=sterischer Faktor).

4 Theorie des Übergangszustandes= Transition State Theory TST Von Henry Eyring ( ), Weiterentwicklung der Arrhenius-Theorie, speziell auch für Reaktionen in Lösungen, auf Basis der Statistischen Thermodynamik. Die Edukte sind von den Produkten durch einen Potentialwall (Aktivierungsbarriere) getrennt, der einen Sattelpunkt auf der Potentialhyperfläche darstellt. Die Reaktion der Edukte über den Übergangszustand zu den Produkten verläuft entlang einer Reaktionskoordinate = Weg zwischen den Edukten und Produkten mit jeweils minimaler Änderung der potentiellen Energie. Der aktivierte Komplex liegt auf dem Sattelpunkt.

5 Eyring machte durch die Einführung der Reaktionskoordinate einen sehr wichtigen neuen Beitrag. Eine weitere wichtige neue Annahme war, dass der aktivierte Komplex mit den reagierenden Molekülen in einem „Quasi-Gleichgewicht“ steht.

6 Foto: Kauzmann Eyring, H., "The Activated Complex in Chemical Reactions," J. Chem. Phys., 1935, 3, Transmissions-Faktor, in Lösungen =1 Henry Eyring

7 Anstieg der Geraden gedeutet als Ordinatenabschnitt gedeutet als Im Bereich der Raumtemperatur ist E a ca. 2.5 kJ/mol größer als d.h. der “RT“ –Term ist gewöhnlich viel kleiner als E a bzw.

8 groß, negativ: Entropieverlust weist darauf hin, dass sich zwei Reaktionspartner in einem ÜZ vereinigen klein, weil schnelle Reaktion k

9 Nur wahre Geschwindigkeitskonstanten, also solche, die keine unerkannten, ungeklärten Konzentrationsabhängigkeiten enthalten, können mit dem Arrhenius- oder TST Modell behandelt werden! Probleme bei der Deutung der Reaktionsgeschwindigkeits-Messwerte können dann auftreten, wenn die untersuchte Reaktion keine Elementarreaktion ist.

10 Falls die Reaktion aus mehreren Elementarreaktionen zusammengesetzt ist, ergibt sich die Geschwindigkeitskonstante in vielen Fällen aus den Geschwindigkeitskonstanten der Elementarreaktionen und den Gleichgewichtskonstanten vorgelagerter, sich sehr rasch einstellender „Gleichgewichte“. Zusammengesetzte Geschwindigkeitskonstanten

11 zusammengesetzte Geschwindigkeitskonstante Beispiel 1

12 Würde bei Beispiel 1 nicht erkannt werden, dass diese Reaktion ein vorgelagertes Gleichgewicht enthält, So würde man irrtümlich glauben, dass Folgendes gilt: k wäre dann noch von H + abhängig!

13 Wie sieht das Temperaturprofil der zusammen- gesetzten Geschwindigkeits- konstante aus? sind temperaturunabhängig!

14 Beispiel 1 Temperaturprofil: lineares Temperaturprofil ln(k/T) gegen (1/T) Kennt man so kann man die Werte für die Aktivierungsenthalpie und Aktivierungsentropie aus der Steigung und dem Ordinatenabschnitt erhalten.

15 In diesem Fall mit vorgelagertem Gleichgewicht kann es passieren, dass negativ ist mit einem Absolutbetrag größer als Dann ist eine negative Zahl! Das bedeutet, die Reaktionsgeschwindigkeit würde paradoxerweise mit steigender Temperatur sinken (falls dieser Effekt den Faktor T überwiegt). Beispiel: 2 NO+O 2 2 NO 2 2 NO N 2 O 2 N 2 O 2 +O 2 2 NO 2

16 Beispiel 2 Die intermediäre Verbindung I bildet sich in einem vorgelagerten Gleichgewicht

17 zusammengesetzte Geschwindigkeitskonstante: Beispiel 2

18 Temperaturprofil lineares Temperaturprofil

19 Beispiel 3: Geschwindigkeit, mit der das Gleichgewicht angestrebt wird nicht nur zu Beginn der Reaktion, sondern im Verlauf der Reaktion Im Gleichgewicht gilt:

20 zusammengesetzte Geschwindigkeitskonstante

21 Mit der TST ergibt das: Das Temperaturprofil ist nicht linear, da hier eine Summe von Konstanten auftritt.

22 A P1P1 P2P2 kk kk Beispiel 4: verzweigte Reaktion zusammengesetzte Geschwindigkeits- konstante Das Temperaturprofil ist nicht linear, da eine Summe von Konstanten auftritt.

23 Scheinbare Aktivierungsenthalpie Das Diagramm gegen 1/T (Temperaturprofil) ergibt eine Kurve. Die Tangente an diese Kurve kann benutzt werden, um eine scheinbare Aktivierungsenthalpie zu erhalten.

24 Temperaturprofil der (zusammengesetzten) Geschwindigkeitskonstante k=k 6 +k 7 einer verzweigten Reaktion. (In dieser Abb. ist ln((k 6 +k 7 )/T) gegen 1/T aufgetragen, sowie ln(k 6 /T) gegen 1/T und ln(k 7 /T) gegen 1/T) (Quelle: Espenson)

25 Reaktion mit 2 irreversiblen Reaktionsschritten (pseudo)erster Ordn. : A B B C k1k1 k2k2

26  Diese Gleichung ist symmetrisch bezüglich k 1 und k 2 Vertauscht man die Werte für die Geschwindigkeitskonstanten k 1 und k 2, so ergibt sich dasselbe Profil für den Aufbau von C, obwohl die Konzentrationsverläufe von A und B dann ganz anders aussehen.  Leitet man die Gleichung nach der Zeit ab, so erkennt man dass bei t=0 gilt d[C]/dt=0 d.h. die Anfangsgeschwindigkeit der Bildung von C ist gleich 0.

27  Die Anfangsgeschwindigkeit der Bildung von B ist endlich, die Konzentration von B erreicht ein Maximum und fällt dann wieder ab.  Leitet man die Gleichung nach der Zeit ab, so erhält man: Daraus können wir erkennen, dass die maximale Konzentration von B zum Zeitpunkt t m vorliegt mit:

28 k 2 =k 1 /3 k 2 =3 k 1


Herunterladen ppt "Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion Die Arrhenius-Gleichung lässt sich auf Basis der Stoßtheorie deuten (hardsphere collision."

Ähnliche Präsentationen


Google-Anzeigen