Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Diskursrelationen und ihre Markierung Antonina Wertmann Olena Beck.

Ähnliche Präsentationen


Präsentation zum Thema: "Diskursrelationen und ihre Markierung Antonina Wertmann Olena Beck."—  Präsentation transkript:

1

2 Diskursrelationen und ihre Markierung Antonina Wertmann Olena Beck

3 08.12.2006Seite 2 Diskursrelationen Diskursrelationen werden auch rhetorische Relation oder Rhetorische Prädikate und Kohärenzrelation genannt. Eine Diskursrelation ist die Beziehung, die zwischen zwei Äußerungen besteht, die kohärent verbunden sind.

4 08.12.2006Seite 3 Wozu dienen Diskursrelationen? Verwendet für: Textverstehen Textzusammenfassung und - komprimierung Dialogverstehen Informationsextraktion

5 08.12.2006Seite 4 Sichten der Diskurs- Kohärenz 1. Ein Diskurs ist kohärent, wenn die Segmente durch ihren Inhalt verbunden sind. Ein solcher Typ der Kohärenz heißt referential oder topic continuity. 2. Ein Diskurs ist kohärent, wenn es eine Relation zwischen zwei oder mehreren Diskurssegmenten gibt. Diese Relation kann zwischen zwei aufeinander folgenden Sätzen, Paragraphen oder Kapiteln existieren. Ein solcher Typ des Zusammenhanges heißt coherence relation.

6 08.12.2006Seite 5 Definition der Kohärenzrelationen Seien zwei Diskurssegmente S1 und S2 gegeben. Weiterhin gelte, dass S1 und S2 direkt oder indirekt die Aussagen P und Q ausdrücken, die inhaltlich verbunden sind. Die Kohärenzrelation definiert, wie S1, S2 auf P und Q abgebildet werden. Das Problem bei der Bestimmung von Kohärenzrelationen ist: P und Q zu finden P und Q zu S1/S2 in Zusammenhang zu bringen P und Q können entweder Propositionen oder Illokutionen sein, die durch S1/S2 ausgedrückt sind. Es gibt vier grundlegende Kriterien, nach denen die Diskursrelationen klassifiziert werden können.

7 08.12.2006Seite 6 Das 1. Grundkriterium Zuerst wird die Frage beantwortet, ob die Relation zwischen P und Q eine kausale Relation ist, wenn nicht, dann ist die Relation additiv. Ein solches Kriterium wird basic operation genannt. Die additive Relation (PQ) entsteht nur, wenn beide Diskurssegmenten für den Sprecher wahr sind. Die kausale Relation (PQ) entsteht, wenn ein Diskurssegment P das zweite Diskurssegment Q impliziert. Die kausale Relation ist nur dann wahr, wenn beide Segmenten wahr sind. Noch wichtiger ist, dass eine Verbindung zwischen P und Q existiert, z.B.: Wenn Schweden größer als Dänemark ist, dann ist Jürki älter als Lauri.

8 08.12.2006Seite 7 Das 2. Grundkriterium Das zweite grundlegende Kriterium heißt source of coherence. Dabei wird die Frage betrachtet, ob eine Relation zwischen den Propositionen oder den Illokutionen in S1 und S2 existiert. Im ersten Fall ist die Relationen semantisch, P und Q sind Propositionen und werden durch S1 und S2 ausgedrückt. Die Diskurssegmente sind durch ihren propositionalen Inhalt verbunden. Die Relation existiert, weil wir durch Weltwissen die beiden Diskurssegmente im Zusammenhang bringen können, z.B.: Das Einhorn starb, weil es krank war.

9 08.12.2006Seite 8 Das 2. Grundkriterium Im zweiten Fall ist die Relation pragmatisch. P und Q sind Illokutionen und werden durch S1 und S2 ausgedrückt. Die Kohärenz existiert, weil der Sprecher zielorientiert ist. Milch ist im Kühlschrank. Ich bin beschäftigt. Milch ist im Kühlschrank. Ich habe sie gestern dorthin gestellt.

10 08.12.2006Seite 9 Das 3. Grundkriterium Die dritte Frage ist, in welcher Ordnung P und Q im Diskurs vorkommen. Wenn die Information im ersten Diskurssegment S1 in den Basisoperation (PQ oder PQ) P ausdrückt und S2 Q, wird das basic order genannt, z.B.: Wenn das Glas herunter fällt, dann wird es zerbrechen. Drückt dagegen in den Basisoperation S1 Q und S2 P aus, dann wird das nonbasic order genannt. Das dritte Kriterium heißt order of the segments.

11 08.12.2006Seite 10 Das 4. Grundkriterium Das vierte Kriterium heißt polarity. Die letzte zu betrachtende Frage ist, ob P und Q in den basic operations den S1/S2 oder ¬S1/¬S2 entsprechen. Die Relation heißt positiv, wenn P und Q in den basic operations S1 und S2 repräsentieren und negativ, wenn P und Q ¬S1 und ¬S2 entsprechen.

12 Basic Operation Source of Coherence OrderPolarityClassRelation CausalSemanticBasicPositive1.Cause-consequence CausalSemanticBasicNegative2.Contrastive cause-consequence CausalSemanticNonbasicPositive3.Consequence-cause CausalSemanticNonbasicNegative4.Contrastive consequence-cause CausalPragmaticBasicPositive5a.Argument-claim 5b.Instrument-goal 5c.Condition-consequence CausalPragmaticBasicNegative6.Contrastive argument-claim CausalPragmaticNonbasicPositive7a.Claim- argument 7b.Goal-instrument 7c.Consequence-condition CausalPragmaticNonbasicNegative8.Contrastive claim- argument AdditiveSemantic-Positiv9.List AdditiveSemantic-Negative10a.Exception 10b.Opposition AdditivePragmatic-Positiv11.Enumeration AdditivePragmatic-Negative12.Concession Sanders, Spooren und Noordman definieren eine Taxonomie, in der verschiedene Diskursrelationen in 12 Klassen gegliedert sind.

13 08.12.2006Seite 12 Beispiele zur Taxonomie 1. Letzte Woche regnete es viel in Schottland, weil es ein Tiefdruckgebiet über Irland gab. basic operation: causal sourse of coherence: semantic Relation: consequence-cause order: non-basic polarity: positiv 2.Letzte Woche regnete es viel in Schottland. In den Niederlanden war das Wetter auch schlecht. basic operetion: additive sourse of coherence: semanticRelation: list order: - polarity: positiv

14 08.12.2006Seite 13 Beispiele zur Taxonomie 3. Letzte Woche war das Wetter in Schottland schlecht, während in den Niederlanden die Sonne schien. basic operation: additive sourse of coherence: semantic Relation: opposition order: - polarity: negativ 4.Das Klavierkonzert von Beethoven wurde aus dem Programm genommen, weil der Solist Anthony di Bonaventura sehr ernst erkrankte. basic operation: causal source of coherence: semantic Relation: consequence-cause order: nonbasic polarity: positiv

15 08.12.2006Seite 14 Experimente zur Diskursrelationen Das Ziel des ersten Experiments war festzustellen, ob die gegebene Taxonomie der Relationen mit der intuitiven Klassifizierung der Relationen von den Versuchspersonen übereinstimmt. 34 Sätze wurden mit dem originalem Kontext gegeben. Der Prinzip von vier Grundkriterien wurde bevor erklärt und die Liste mit den Relationen anhand gegeben. Die Versuchspersonen mussten die Sätze nach den 17 Relationklassen sortieren. Das Ergebnis zeigte, dass die sortierten Sätzen der Versuchspersonen mit den originalen Relationklassen übereinstimmten.

16 08.12.2006Seite 15 Das zweite Experiment Das Ziel des zweiten Experiments war es festzustellen, ob Menschen in der Lage sind, selbst Relationen zwischen den Sätzen zu finden und zu bestimmen, zu welcher Klasse sie gehören. Es wurden 32 Paare von Sätzen mit ihrem Originalkontext vorgegeben. Die Versuchspersonen mussten selbst die Satzpaare durch Konjunktionen zu 18 Sätzen verbinden und bestimmen, zu welchen Relationsklassen diese Sätze gehören, z.B. 1. (wurde) das Klavierkonzert von Beethoven aus dem Programm genommen 2. (erkrankte) der Solist Anthony di Bonaventura sehr ernst Das Ergebnis zeigte, dass die Klassifizierung der Sätzen von den Versuchspersonen mit der Taxonomie übereinstimmte. Die Experimente zeigen, dass die vier Grundkriterien ausreichend sind, um deutliche Unterschiede zwischen den Relationen zu machen und die Sätze nach der Taxonomie richtig zu klassifizieren.

17 08.12.2006Seite 16 Relationen, die nicht in die Taxonomie eingegangen sind Temporale Relation John nahm den Hörer ab. Er wählte eine Nummer. Beschreibende Relation John hat eine Anzahl an Schweinen. Sie sind rosa und sie produzieren viel Fleisch. Verlinkte Relation Und am Sonntagmorgen gegen 5 Uhr, setzte ich mich in der Penn Station hin. Und während ich dort saß, kam eine junge Katze zu mir hoch, [...] Alternative Relation Heute Abend gehen wir ins Kino oder bleiben zu Hause.

18 08.12.2006Seite 17 Wofür benötigt man die Taxonomie der Relationen für die Untersuchung des Spracherwerbs für Textanalyse für psycholinguistischen Forschung

19 18 Diskursrelationen und ihre Markierung - Teil 2 Diskursrelationen und ihre Markierungen in der Anwendung

20 08.12.2006Seite 19 Finden von Diskursrelationen Damit Computer Diskursrelationen finden und verstehen können ist es notwendig Festzustellen, ob zwischen zwei Textsegmenten eine Relation besteht Automatisch Diskursrelationen zu klassifizieren

21 08.12.2006Seite 20 Diskurs-Markierungen Diskurs-Markierungen sind Signalphrasen die eine Diskursrelation eine Diskurs-Segmentgrenze anzeigen. Aber: Diskursrelationen hängen nicht vom Vorhandensein von Markierungen ab!

22 08.12.2006Seite 21 Diskurs-Markierungen II DiskursrelationSignalphrase AufzählungUnd, dann, weiterhin KontrastObwohl, aber, während Ursache-WirkungWeil, und so, deshalb, darum GleichheitFaktisch, andererseits, ungefähr, ebenso ThemenwechselÜbrigens, nebenbei BeispielZum Beispiel VerfeinerungGenauer gesagt, also GeneralisationIm allgemeinen, meistens AttributiveSagen, dass… glauben, dass.. TemporaleBevor, während

23 08.12.2006Seite 22 Identifikation der Diskursrelationen durch syntaktische und lexikalische Information Der Computer klassifiziert Diskursrelationen: 1. Mit Hilfe von Signalwörtern 2. Mit Hilfe von Sinnrelationen 3. Temporale und attributive Angaben

24 08.12.2006Seite 23 Markierungen: Ein Beispiel Beispiel: [ Auf der Straße gab es viele Unfälle. ] a [ Deshalb wird eine Unterführung gebaut. ] b (Ursache- Wirkung) Beispiel: [ Das Essen war sehr schlecht.] a [ Außerdem war es auch noch teuer. ] b (Aufzählung)

25 08.12.2006Seite 24 Sinnrelationen: Ein Beispiel Beispiel: Idealerweise akzeptieren die Menschen einander überall auf der Welt als ebenbürtig. Die Wirklichkeit ist nicht so einfach. (Kontrast) Beispiel: Jede Stadt hat viele Geschäfte. Geschenkläden, Warenhäuser, und Supermärkte sind die Haupteinkaufs- möglichkeiten. (Beispiele)

26 08.12.2006Seite 25 Bestimmung der Sinnrelationen Mit Hilfe von WordNet, GermaNet,... Brandeis Semantic Ontology (BSO) (Pustejovsky et. al 2006) Notwendig für alle möglichen Wortpaare!

27 08.12.2006Seite 26 Bestimmung temporaler und attributiver Angaben Mit Hilfe von EviTA Findet und annotiert auf Ereignisse verweisende Phrasen die zeitlich geordnet werden können SlinkET Identifiziert Modalität der vorkommenden Verben

28 08.12.2006Seite 27 SlinkET Beispiel

29 08.12.2006Seite 28 Eine Studie zur Klassifikation von DR (Pustejovsky et. al 2006) Studie zur Identifikation und Klassifikation von DR Als Merkmalsvektor wurden Signalwörter, Sinnrelationen, Temporale und Attributive Merkmale verwendet Verwendete Werkzeuge: Graphbank, Brandeis Semantic Ontology, EvITA, SlinkET

30 08.12.2006Seite 29 Eine Studie zur Klassifikation von DR (Pustejovsky et. al 2006) Merkmalsvektor lässt sich für alle möglichen Segmentpaare bilden (!) Maximum Entropie Klassifikator wurde verwendet, um DR zu bestimmen Daten kamen aus Graphbank, einem mit DR annotiertem Korpus 80% der Relationen konnten richtig klassifiziert werden

31 08.12.2006Seite 30 Literatur Ted J.Sanders, Leo G. M. Noordman. 2000. The role of coherence relations and their linguistic markers in text processing. Wellner, J. Pustejovsky, C. Havasi, A. Rumshinsky, R. Sauri. 2006. Classifikation of Discourse Coherence Relations: An Exploratory Study using Multiple Knowlege Sources. Manami Saito, Kazuhide Yamamoto, Satoshi Sekine. 2006. Using Phrasal Patterns to Identify Discourse Relations.


Herunterladen ppt "Diskursrelationen und ihre Markierung Antonina Wertmann Olena Beck."

Ähnliche Präsentationen


Google-Anzeigen