Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Wie du Folgendes lernen kannst….. Vorhersagen zu treffen, während du spielst Wie du lernen kannst, die Wahrscheinlichkeitsrechnung anzuwenden.

Ähnliche Präsentationen


Präsentation zum Thema: "Wie du Folgendes lernen kannst….. Vorhersagen zu treffen, während du spielst Wie du lernen kannst, die Wahrscheinlichkeitsrechnung anzuwenden."—  Präsentation transkript:

1 Wie du Folgendes lernen kannst….. Vorhersagen zu treffen, während du spielst Wie du lernen kannst, die Wahrscheinlichkeitsrechnung anzuwenden

2 . Sie ist ein Spiel, eine Waffe, ein Teil Zivilisation Wir sollten alle mit ihr vertraut sein, um gefährliche Situationen zu vermeiden

3 … wenn du auf die Spiralen klickst, findest du den richtigen Weg

4

5

6

7

8

9

10

11

12

13

14

15 Die Wahrscheinlichkeitsrechnung verringert in manchen Fällen Unsicherheiten, manchmal auf sehr geringe Werte. Ein Ereignis wird als all das definiert, was in der Natur passieren kann.

16 . P.S.: Nur bei zufälligen Ereignissen können wir die Wahrscheinlichkeitsrechnung anwenden.

17 Wenn ich einen Würfel werfe, wie hoch ist die Wahrscheinlichkeit, dass ich eine 6 würfele? Dies ist ein zufälliges Ereignis, das nicht von Statistiken abhängt (d.h. jeder Wurf ist anders und es gibt keine besondere Technik, eine 6 zu würfeln. Du kannst jedoch die Wahrscheinlichkeit berechnen. Dies ist die klassische mathematische Wahrscheinlichkeitsrechnung. Damit werden wir uns beschäftigen.

18 Zunächst einmal sehen wir uns die Symbole an. Wir werden die Wahrscheinlichkeit P nennen E ein wahrscheinliches Ereignis. Die Notation P(E) zeigt die Wahrscheinlichkeit eines zufälligen Ereignisses (E). Lass uns nun auf den Würfel zurückkommen. Wie hoch ist die Wahrscheinlichkeit, dass ich eine 6 würfele? Der Würfel hat 6 Seiten. Nur eine davon ist E. Um P(E6) zu berechnen, werden wir folgende Formel verwenden: P(E) = Anzahl an günstigen Fällen für dieses Ereignis Anzahl an möglichen Fällen In unserem Fall ist es 1/6. Wir erwarten also, dass das Ereignis mit einer Wahrscheinlichkeit von 16.7-% eintritt (d.h. bei 100 Würfen erwarten, wir dass wir 17 mal eine 6 würfeln).

19 Die mathematische Wahrscheinlichkeit eines Ereignisses P(E) errechnet sich, wenn man die Anzahl an günstigen Ereignissen durch die Anzahl an möglichen Ereignissen teilt. Der erzielte Wert wird immer zwischen 0 und 1 liegen P(E) = 0 heißt, dass das Ereignis unmöglich ist. P(E) = 1 heißt, dass das Ereignis auf jeden Fall eintritt. Je näher P(E) an 1 heranreicht, desto wahrscheinlicher ist es, dass das Ereignis eintritt.

20 Die Antwort ist ja! Wie hoch die Wahrscheinlichkeit ist, dass ein Arbeiter bei der Arbeit einen Unfall hat, ist schwierig zu beantworten Es hängt sicherlich von der Arbeit ab, die er verrichtet. Ein Bergmann ist sicher mehr gefährdet als ein Angestellter. Diese Art der Wahrscheinlichkeit wird Statistische Wahrscheinlichkeit genannt. Es wird auf der Basis von Häufigkeit gemessen, mit der einige Phänomene auftreten.

21 Der numerische Wert der statistischen Wahrscheinlichkeit (auch relative Häufigkeit genannt)eines Ereignisses ist fast gleich groß wie die mathematische Wahrscheinlichkeit, wenn die Anzahl an Beobachtungen sehr groß ist.

22 Wir zeigen es an einem Beispiel Wenn du eine Münze 10 Mal wirfst, heißt das nicht, dass du fünf Mal Zahl und fünf Mal Kopf wirfst. Jedoch, wenn wir mit einem Computer Würfe simulieren, ist das Verhältnis von Kopf zu Zahl ungefähr 50:50.

23 Jetzt hast du es geschafft und du kannst Aufgaben lösen. Sieh, wie gut du bist.

24 Es tut mir Leid, leider falsch! Beim nächsten Mal hast du mehr Glück

25

26

27

28

29

30

31

32

33


Herunterladen ppt "Wie du Folgendes lernen kannst….. Vorhersagen zu treffen, während du spielst Wie du lernen kannst, die Wahrscheinlichkeitsrechnung anzuwenden."

Ähnliche Präsentationen


Google-Anzeigen