Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

ESYCS - Studie 7 „Embedded Hardware“

Ähnliche Präsentationen


Präsentation zum Thema: "ESYCS - Studie 7 „Embedded Hardware“"—  Präsentation transkript:

1 ESYCS - Studie 7 „Embedded Hardware“
Ein Überblick über ASIC – Technologie Ulrich Wagner

2 Inhalt Kostenproblematik des Chipdesigns
ASIC – Überblick über die Technologie Entscheidungskriterien Anwendungsbeispiele

3 Ziel eines ASIC‘s

4 Hardware: Entwurfsproblematik

5 Entwicklung der Investitionskosten

6 Investitionskosten Chipentwicklung

7 Technologieentwicklung seit 57
Ständiger Wechsel zwischen Standardisierung und Spezialisierung im 10 Jahres Takt

8 Eingebettete Hardware: ASIC
Application Specific Integrated Circuit Ein vollständig nach Applikation hergestellter Schaltkreis Hohe Einstiegskosten Euro für 2µm Technologie, multi project wafer Euro für 0.13 µm Technologie Niedrige Produktionskosten hunderte von Chips auf einem Wafer für Euro

9 ASIC Alle Freiheitsgrade der Technologie können zur Optimierung genutzt werden Beste Implementierung für eine fest vorgegebene Schaltung Fehlerbehebung und nachträgliche Änderungen oder Optimierungen sind sehr teuer Der Chip muß so entworfen werden, daß er in allen in Frage kommenden Anwendungen verwendet werden kann. Einsatzbereich: Standardschaltungen mit hohen Stückzahlen. (Prozessoren, Speicher, FPGAs, ...)

10 Einteilung der ASIC‘s

11 Full Custom ASIC Nur in Anwendungen mit größten Stückzahlen
Entwicklung nur in der Chip-Fab möglich Gesamtlayout wird als Maske in der Chip-Fab nach Kundenwunsch erstellt Belichtung und Packaging ebenso

12 Semi-Custom ASIC: Gate Array
Die Variante mit der größten Verbreitung weltweit Beim Gate Array werden die meisten Herstellungsschritte kundenunabhängig durchgeführt. Die Lage der IO-Pads, Transistoren, etc. sind standardisiert, der Kunde kann nur noch die Verdrahtung beeinflussen. Der Kunde kann alle elektrischen Optimierungen vornehmen, hat jedoch keine detaillierte Kontrolle über das Layout.

13 Gate Array Änderungen sind etwas weniger kosten- und zeitintensiv.
Gate Arrays verlieren zur Zeit deutlich Marktanteile an ASICs und FPGAs Dadurch bleiben auch bei modernsten Technologien die Einstiegskosten in der Entwicklung unter Euro Die Produktionskosten sind mit denen von Full-Custum ASICs vergleichbar.

14 FPGAs Field Programmable Gate Arrays
Bei FPGAs wird der Chip so gefertigt, daß die Schaltung vom Kunden selbst bestimmt werden kann. Und zwar entweder: einmalig (Antifuse: Quicklogic) mehrmals (Flash: Actel) dynamisch, im System (SRAM: Actel, Altera, Atmel, DynaChip, Lucent, Xilinx)

15 Wie groß sind FPGAs? Zur Zeit: 8.000 Gatter + 3KByte RAM für $ 8
Nächstes Jahr Gatter

16 Wie schnell ist so ein FPGA?
Anwendungsbeispiele für Virtex-E FPGAs 32 Bit Prozessoren: 20-50 MHz synthetisiert, single cycle 125 MHz synthetisiert, pipeline 266 MHz DDR SRAM Controller 622 Mbps serieller Link

17 Welche ASIC Familie ist die beste für mich?
Technologische Überlegung zur Applikation: Was brauche ich mindestens um meiner Applikation gerecht zu werden? Kaufmännische Überlegung: Stückzahl vs. Kosten Ansonsten gilt in der Regel: Für ein neues Projekt immer die neueste ASIC/FPGA Familie verwenden, da diese immer am günstigsten sind

18 Technologische Zielfunktion beim Entwurf digitaler Schaltungen

19 ASICs: Die wichtigsten Kriterien

20 Positionierung der verschiedenen ASIC Gruppen
Geschwindigkeit Komplexität Controller Prozessoren FPGA Full-Custom ASIC Semi-Custom ASIC Positionierung der verschiedenen ASIC Gruppen

21 Flächen/Leistungseffizienz

22 Überlegungen zu Kosten vs. Stückzahl
25000 1845 FPGA MAG CBIC Fixkosten 21800 86000 146000 Euro/Stück 46,8 12 9,6

23 ASIC Entwicklungzeiten

24 FPGA Weltmarkt 2003

25 Umsatzentwicklung FPGA und Prognose

26 Stagnation bei Rapid Prototyping

27 Anwendungsbeispiel: Semi-Custom ASIC

28 Anwendungsbeispiel: ohne FPGA

29 Anwendungsbeispiel: mit FPGA

30 Vielen Dank für Ihre Aufmerksamkeit!

31 Anwendungsbeispiel: MediaCup (Teco Karlsruhe)
Die MediaCup ist eine mit Rechnertechnologie ausgestattete Kaffeetasse. Eine in den Tassenboden eingelassene Elektronik erlaubt es, die verschiedenen Zustände einer Tasse (etwa ob jemand trinkt) zu ermitteln und drahtlos zu übertragen. Damit können Kontextinformationen einer Umgebung ermittelt und kommuniziert werden. Die MediaCup zeigt, wie Objekte des Alltags mit Computer- und Kommunikationstechnologie ausgestattet werden können.

32 Wie funktioniert die Tasse?
Der Boden der MediaCup enthält die Elektronik in einem abnehmbaren Gummiüberzieher. Die Elektronik wird kabellos mit Energie versorgt; Sensoren erkennen Temperatur und Bewegungszustand der Tasse. Diese Informationen wird von der Tasse in den Raum gesendet. Der Boden der MediaCup besteht in einem aus Gummi gefertigten abnehmbaren Überzieher. In diesen Boden ist die Elektronik der Tasse eingelassen. Wenn die Tasse gespült werden soll, kann der Boden abgenommen werden, um die Elektronik nicht zu beschädigen. Die Elektronik der Tasse wird kabellos mit Energie versorgt. Dazu wurde eine spezielle, ebenfalls elektronisierte Untertasse entwickelt. DieEnergie wird von der Tasse in speziellen Akkus zwischengespeichert; ein 15 minütiger Aufladevorgang kann die Tasse etwa 10 Stunden mit Energie versorgen. Die in der Tasse eingelassene Elektronik erkennt den Bewegungszustand der Tasse (zum Beispiel, ob jemand aus der Tasse trinkt) sowie die Temperatur. Diese Informationen wird von der Tasse in den Raum kommuniziert. Objekte, die sich ebenfalls in der Umgebung befinden (zum Beispiel Kaffeemaschinen oder einem Web-Server) können diese Informationen empfangen und verwerten, um den Benutzer zu unterstützten und Vorgänge zu automatisieren.

33 FPGAs: Antifuse Chip wird durch das gezielte Brennen von Schmelzbrücken konfiguriert und kann danach nicht mehr verändert werden. Fast keine Einstiegskosten, dafür höhere Produktionskosten als beim ASIC Fehlerbehebung und Updates sind für neu ausgelieferte Platinen problemlos möglich. Bereits produzierte Chips können jedoch nicht mehr verändert werden. Einsatzbereich: ASIC Ersatz für kleinere Stückzahlen

34 FPGAs: Flash Flash oder EPROM basierte FPGAs lassen sich einige tausend mal neu konfigurieren, behalten aber ihre Konfiguration auch ohne Stromversorgung Mit geringem zusätzlichem Schaltungsaufwand lassen sich Updates beim Kunden ausführen Die einzige existierende FPGA Familie mit dieser Technologie ist leider recht teuer (Actel proASIC) Das ändern der Konfiguration ist relativ langsam (mehrere Sekunden)

35 FPGAs: SRAM Zur Zeit dominierende Technologie.
unpraktischer als FLASH, aber deutlich billiger Beim einschalten des Systems wird die Konfiguration aus einem externen Speicher in den FPGA geladen. Es werden zusätzliche externe Komponenten benötigt. Der Chip kann beliebig oft und sehr schnell umkonfiguriert werden. Bei einigen FPGA-Familien auch teilweise und während des Betriebs.

36 FPGAs: SRAM SRAM basierte FPGAs haben dadurch neben dem Update beim Kunde noch weiter Möglichkeiten: Anpassen der Schaltung auf eine Probleminstanz (z.B. eine Schaltung, die nach einem speziellen DNA-Muster sucht) Die Verwendung mehrerer Schaltungen nacheinander in der selben Hardware. Buzzword: Reconfigurable Computing Laden der neuesten Konfiguration über ein Netzwerk. (wie z.B. bei Handies) Buzzword: Internet Reconfigurable Logic

37 Grundlagen: Embedded System
anwendungsspezifische Software anwendungsspezifische Hardware Umwelt z.B.: Waschmaschine SH3 7729-DSP Mikrocontroller-Kern FPGA ASIC Kommunikations- schnittstelle z.B.: Display z.B.: Auto


Herunterladen ppt "ESYCS - Studie 7 „Embedded Hardware“"

Ähnliche Präsentationen


Google-Anzeigen